
Conditional Estimation of HMMs for Information Extraction 

Joseph Smarr 
Symbolic Systems Program 

Stanford University 
Stanford, CA 94305-2181 
jsmarr@stanford.edu 

Huy Nguyen 
Computer Science Dept. 

Stanford University 
Stanford, CA 94305-9040 
htnguyen@stanford.edu 

Dan Klein 
Computer Science Dept. 

Stanford University 
Stanford, CA 94305-9040 
klein@cs.stanford.edu 

Christopher D. Manning 
Computer Science Dept. 

Stanford University 
Stanford, CA 94305-9040 

manning@cs.stanford.edu 

 

 

Abstract 

The usual procedure of optimizing hidden 
Markov Models for data likelihood has 
undesirable consequences in information 
extraction: it focuses attention on the data 
rather than on the labeling task. Often, 
joint likelihood is poorly correlated with 
extraction F1. We demonstrate that opti-
mizing the conditional likelihood of the 
target labels addresses these limitations 
and is more indicative of task perform-
ance.  Comparing joint and conditional 
likelihood also helps to explain the em-
pirical finding that, for IE, HMMs with 
fixed structures tend to outperform those 
with more flexible structures: fixed struc-
tures constrain EM to better optimize 
conditional likelihood. 

1 Introduction 

A standard task in information extraction (IE) is 
the fragment extraction task of identifying small 
fragments inside a larger document that pertain to a 
specific semantic slot of interest.  For example, 
given a news article about a corporate acquisition, 
we might want to extract the name of the company 
that was acquired, the name of the purchasing 
company, and the dollar amount for which the 
company was acquired.  Several techniques have 
been explored for this basic IE task, including 
hand-built rule-based systems (Appelt et al. 1993), 
wrapper induction systems (Kushmerick et al. 
1997), and statistical generative models, notably 

hidden Markov models (HMMs) (Leek 1997, Bikel 
et al. 1997, Freitag and McCallum 2000). 

In an HMM, the state of the hidden process en-
capsulates the relevant information about the past 
environment.  In some NLP applications, such as 
part-of-speech tagging (Brants 2000), the states 
map directly onto the desired classification deci-
sions, and the hidden process is fully observed in 
the training data.  For example, the state over a 
word might encode the previous tag and the current 
tag, both of which are known at each point.  
Maximum-likelihood training is therefore trivial – 
parameters are estimated by taking the ratios of 
(smoothed) empirical counts.  However, for the 
approach of (Freitag and McCallum 2000), which 
we adopt here, the states of the HMM are not fully 
specified in the training data.  Rather, states are 
broken into types, such as target and background. 
Such models correspond to pair HMMs, the prob-
abilistic extension of finite state transducers, which 
have been more explored in bioinformatics (Durbin 
et al. 1998: 81). In the case where the classes parti-
tion the states, this is also referred to as a class 
HMM (Krogh 1994).  The word sequence (W) and 
state type sequence (C) are observed, but the states 
(S) themselves are not.  For example, there may be 
3 target states and 7 background states, the roles of 
which are not specified.  Parameter estimation thus 
has the important task of deciding the roles of the 
states.   

In the presence of incomplete data, HMMs are 
usually trained using the Baum-Welch algorithm 
(Rabiner 1989), a special case of the EM algo-
rithm. EM is a local search procedure for optimiz-
ing the marginal likelihood of the observed data 
P(W,C). To the extent that EM is the only tool 
available, we can use it to maximize this training 
joint likelihood (JL), and merely hope that that it 



finds a felicitous configuration of the unobserved 
data (specific states) so that hopefully test F1 gets 
optimized well enough along the way.  However, 
for IE, we really do not care about the joint likeli-
hood P(W,C) of the training set.  Rather, for a 
standalone task, we typically only care about the 
accuracy (typically measured by F1 of target preci-
sion and recall).  If we want to use the extraction 
system as a stage in a probabilistic pipeline, then 
perhaps we care more about the conditional likeli-
hood (CL) of the types given the words, P(C|W).  
Therefore, we would ideally like to maximize test 
F1 or test CL.  As the test set is not available, and 
as F1 is a discrete measure, we settle for optimizing 
CL on training data.   

Since CL is a continuous objective, we can ex-
amine direct optimization of this objective.  The 
results indicate that, while training CL is better 
correlated with test F1 than training JL is, direct 
optimization is problematic for complex problems.  
We illustrate these issues with simple examples, 
which demonstrate that the (Freitag and McCallum 
2000) strategy of assigning prior semantics to 
states, such as prefix or suffix, is essentially human 
meta-optimization of CL and F1; with these struc-
tural restrictions, direct CL optimization is easier 
and, more importantly, the JL optima found by EM 
have better CL (but worse JL) scores than in the 
case where structure is not constrained.  Finally, 
we examine these issues on a real IE data set, and 
discuss which aspects of toy data behavior do and 
do not generalize.   

2 An Example 

In order to tractably and succinctly explore the 
training behavior of HMMs optimized for JL (via 
EM) and CL (via CG, see section 3.2) we first con-

sider a synthetic toy data set, which is designed to 
reflect the relevant qualitative features of real text.  
The majority of each synthetic document is back-
ground text, which has regular internal structure, 
but which is uninformative from the perspective of 
identifying target fragments.  Target positions are 
filled with distinctive words and are immediately 
preceded and/or followed by identifiable “prefix” 
and “suffix” words in the background text.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. HMM for information extraction. 
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observed hidden If the words in the target are completely disjoint 
from the words in the background, then one does 
not need to consider context at all to perform ex-
traction.  Two common scenarios that make infor-
mation extraction tasks difficult are similar words 
appearing in both the target and background (e.g., 
company names, only some of which are compa-
nies being purchased), or several distinct targets 
with similar content (e.g., purchasing and pur-
chased company, or start and end times of meet-
ings).  In such cases, a combination of distinct 
content and context must be identified. 

Consider a simple model in which the back-
ground text consists of repeated occurrences of 
abc with case varying independently at random 
(e.g., abCaBcABc…).  This is meant to be analo-
gous to syntactic patterns in background text.  We 
have two distinct targets types t and T, both of 
which show up identically in the text as X and oc-
cur relatively infrequently (roughly 2% of the 
document’s tokens are target tokens).  However, 
X’s of type t are always preceded by lowercase a, 
whereas X’s of type T are always preceded by up-
percase A.  This is meant to be analogous to the 
difference between a start-time phrase like “from 
4:15” and an end-time phrase like “until 4:15”.  A 
sample document might look like the following 
(hyphen represents the class of background words): 

 
Words: aBcabcaXcaBcAbcaBcabcAXc 
Classes: -------t--------------T- 
 
In order to correctly classify the targets, the 

HMM must learn that both targets emit X, but that 
one target is prefixed by a and the other by A. We 
consider a 5-state class HMM with three back-
ground states and one state for each target.  That is, 
in the pair/class HMM there are 3 classes, two of 
the states are dedicated to each generating one of 
the two target classes, and the other three states 
always generate the third background class. Ini-



 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. HMM trained conditionally on toy data 
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Figure 2. HMM trained jointly on toy data 
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tially the transition matrix is uniform and ergodic, 
and all states can emit all tokens.  We first train the 
model to maximize joint data likelihood (see sec-
tion 3.1), producing the HMM shown in Figure 2.  
Heavy arrows indicate high-weight transitions and 
dashed arrows indicate low-weight transitions.  
Circular states are background, hexagons are tar-
gets, and there is an obligatory start and end state 
to mark the document boundary.  Emissions are 
shown inside each of the states. 

In contrast, when the same 5-state HMM is 
trained to maximize conditional likelihood (see 
section 3.2), we end up with the HMM shown in 
Figure 3. 

This model is qualitatively very different from 
the joint-maximized model.  There is little if any 
model of the regular background pattern, because it 
does not increase conditional likelihood (i.e. aid in 
target prediction).  One state generates only a and 
transitions strongly to t.  The other state generates 
only A and transitions strongly to T.  The third state 
generates B’s and C’s of both cases and transitions 
to itself as well as to the two other background 
states.  This model has poor joint likelihood com-
pared to the jointly trained model because it de-
votes none of its parameters to capturing the basic 
abc background pattern. 1  However, it achieves 
perfect F1 on the data because it never goes to a 
target state from the wrong prefix.  The difference 
between these two models is summarized in Table 
1 (log likelihood (LL) and conditional log likeli-
hood (CLL) are on training data, F1 is on test data). 

This HMM achieves a good joint likelihood 
value by using its three background states to en-
code the regular three-token background pattern.  
Notice that it has picked up on the case variation:  
each state emits both the uppercase and lowercase 
version of the letter it has specialized in.  This 
shows EM training of an HMM effectively doing 
clustering of observations, at least in a simple case 
such as this. The state that generates A and a (and 
only this state) links to both target states, since the 
target prefix is always one of these tokens.   

This is a very good model for explaining the 
word sequence—it captures the background regu-
larity and correctly moves from the prefix states to 
the target states to generate the X’s.  But it is a use-
less model for the discriminative needs of the in-
formation extraction task, because nothing in the 
model distinguishes instances of t from instances 
of T.  Whichever target happened to occur more 
frequently overall (T in our generated data) will 
end up with a slightly higher-probability transition 
from the Aa state, and so every X in the document 
will be labeled as type T.  Since the prefix pattern 
is much like normal background text, it is better for 
the model to treat them as such than to “waste” 
states modeling that A transitions to T and a transi-
tions to t. 

 
 LL CLL F1 

Joint HMM -19067 -532 0.5 
Cond. HMM -27655 0 1.0 

Table 1. Trained HMMs on toy data 

                                                           
1 As is common with conditionally optimized models, its joint 
interpretation is not necessarily well-formed.  By the joint 
likelihood of this model, we mean the unique best joint likeli-
hood of all models with this conditionally-learned transition 
structure.  That value is easily determined in this case because 
for the transition structure in figure 3, the HMM becomes a 
fully observed process, and its ML estimates are simply rela-
tive frequency estimates. 
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Figure 5. CLL reflects F1 more closely than LL. 
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Figure 4. Simple ergodic and fixed HMM structure.

Flexible Fixed 

∏=
i

iiiii swPsPscPWSCP )|()()|(),,(
rrr

 
Scaling up to real world data 

Where the product is taken over positions along the 
sequence.  Since C and W are observed, we will 
need to repeatedly find various expectations ac-
cording to the posterior distribution P(S|C,W).  
When computing these expectations, we will need 
to sum over all state sequences S (this is done im-
plicitly via dynamic programming):   

We now present HMM IE experiments performed 
on the Acquisitions data set, a collection of 600 
Reuters newswire articles on the topic of corporate 
acquisitions, drawn from the well-known Reuters 
text categorization collection (Lewis 1992), and 
annotated with semantic tags for information ex-
traction by Dayne Freitag (Freitag 1998). Target 
fields include purchaser, seller, acquired, and 
dlramt.  Dlramt is the quantity for which the com-
pany was acquired, which usually looks like “100 
mln dlrs” or “ten billion yen,” but also sometimes 
look like “undisclosed amount.”  Dlramt is the 
easiest field to extract because of its distinctive 
content (but note that there are many other men-
tions of dollar amounts in the background text).   

∑∏
s i

iiiii swPsPscP )|()()|(  

However, since P(ci|si) is deterministic (1 or 
0), all state sequences that are inconsistent with the 
observed class label sequence (i.e. where at least 
one of the P(ci|si) terms is 0) will end up with 0 
probability and contribute nothing to the sum.  
Thus we can remove the P(ci|si) term from the 
equation and instead see the observations C as 
forcing us to sum over only those state sequences 
that are consistent with the class labels:  

rrr

We consider two similar minimal HMM struc-
tures—an ergodic structure with three background 
states and one target state, and a fixed prefix/suffix 
structure with a background, prefix, target, and 
suffix state arranged in a diamond (both models are 
shown in Figure 4, all states also have self-
transitions which are not shown).  The fixed struc-
ture is a subclass of the ergodic structure that 
represents our intuition about a good subspace of 
the full ergodic parameter space.  Specifically, in 
that subspace some transition probabilities are 
fixed to be 0.  In practice, they are merely initial-
ized to 0, as EM will never re-estimate a parameter 
away from 0. 

∑∏=
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Thus the standard forward-backward algorithm 
need only be modified to just sum quantities over 
only sequences which respect the class constraints.  
Therefore, we can use Baum-Welch estimation 
with little modification. 

The results of training the simple flexible- and 
fixed-structure HMMs are summarized in Table 2.  
Note that to achieve state of the art performance, 
one would use HMMs with more states.  In this 
paper, however, we restrict attention to simple 
models whose parameters and behavior can more 
easily and precisely be interpreted.   

3.1 Optimizing joint likelihood (EM) 

For a general pair HMM, we cannot directly 
apply Baum-Welch for training.  The probability 
distribution P(C,S,W) decomposes as: 

 
 
 



 LL CLL F1 
Flexible -426739 -675 0.24 
Fixed -449743 -387 0.49 

Table 3. HMMs trained with EM 
 

The fixed model converges to a worse joint 
likelihood than the flexible model, but its condi-
tional likelihood is better, as is its F1 on test data.  
To the extent that EM was only a device to indi-
rectly maximize test F1, the fixed structure seems 
the clear choice. 

Figure 5 shows training LL and CLL along 
with test F1 for the flexible model after each itera-
tion of EM training.  Two important observations 
are that CLL is more correlated with F1 than LL 
and that the model with highest LL is not the most 
desirable model in terms of F1.  Given the success 
of conditionally trained models for the toy domain 
discussed above and the apparent correlation of 
CLL and F1 on real data sets, an obvious sugges-
tion is to train the flexible and fixed HMMs to di-
rectly maximize conditional likelihood. 

3.2 Optimizing conditional likelihood (CG) 

EM is a convenient method for maximizing joint 
likelihood.  While iterative lower bounding tech-
niques for conditional likelihood also exist (Jebara 
and Pentland 1998), it turns out that for our prob-
lem that the form of our objective function is well 
suited for generic nonlinear optimization tech-
niques such as conjugate gradient descent (CG).  
Our derivation of the objective value and its de-
rivatives is similar to Krogh (94).  We sketch only 
an outline here.2 

Our objective function P(C|W) can be written 
as a likelihood ratio: 

∑
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In our model, we can obtain these quantities from 
summing out S: 
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The numerator is the same constrained likelihood 
we computed in the last section for use with Baum-
Welch, and the denominator is the identical quan-

tity, only without the class constraints.  These 
quantities can thus be efficiently computed by us-
ing the forward-backward algorithm twice (in par-
allel, for greatest efficiency). In practice, for 
numerical stability and mathematical simplicity, 
we actually optimize log P(C|W) and we consider 
our model parameters to be not the actual transition 
and emission probabilities but rather the logs of 
these quantities. 

In order to efficiently optimize this objective, 
we would like to know not only its value, but also 
the partial derivatives with respect to each model 
parameter (transitions and emissions).  The deriva-
tives have a simple, intuitive form, which we give 
here for emission parameters P(w|s); the transitions 
are identical. 

r

][][
)|(
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swPLog
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Where εc is the conditional expectation of the 
emission w in state s given the class constraints 
and εu is its expectation ignoring the class con-
straints.  These quantities can be calculated in the 
process of computing the value function above.3 

Note that the log-parameters returned by CG 
will each be arbitrary real numbers, meaning that 
in general the HMM will not represent a probabil-
ity distribution; moreover if globally normalized to 
represent one, it will generally be radically defi-
cient.  This does not cause problems for computing 
Viterbi sequences, however, which is all that one 
needs for classification. 

Given the same parameter initializations we 
use with EM (slightly perturbed uniform transi-
tions, corpus-averaged unigram emissions), both 
the flexible and fixed HMMs consistently converge 
to local maxima of conditional likelihood that yield 
0.0 F1 on test data.  This is at first surprising given 
the high performance on toy data.  Comparing the 
parameters of the joint and conditional HMMs, we 
see that the transition weights are qualitatively 
similar, but that the emission weights remain much 
closer to uniform in the conditional model than in 
the joint model, and vary much less from state to 
state.  Thus, the probability of generating target 
words in the target state is not significantly higher 
than generating them in the background state.  

                                                           
3 We also use a weak gaussian prior for regularization of pa-
rameters and a sum-constraint over all parameters to remove a 
spurious degree of freedom in optimization. 

                                                           
2 A detailed derivation is available in an online appendix.   



 
 
 
 

 
 
 
 

 

 
 
 

Figure 7. CG run on output of EM improves F1. 
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Figure 6. CG run on output of EM improves CLL. 
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Since moving to the target state requires following 
low-probability transitions out of the background 
(and through a prefix in the fixed structure), the 
most probable state sequence is to constantly re-
main in the background, yielding no guesses at 
targets.  This is not to say the conditional likeli-
hood of being in a target state over actual targets is 
necessarily unreasonable, just that it is no larger 
than the probability of being in a non-target state. 

It is worth realizing that this is partly because 
company names and dollar amounts do appear in 
the background with relatively high frequency.  In 
fact, even the highest probability target emissions 
for dlramt or a company class like purchaser do 
not have sufficient discriminative power on their 
own to suggest emitting them from a target state.  
Tables 3 and 4 provide some examples of common 
target emissions and their generative and discrimi-
native power.  For reference, the corpus has a total 
of 81,288 words of which 715 are labeled as 
dlramt and 1,885 are labeled as purchaser. 

 
 Generative Discriminative 

word P(w|t) P(w|~t) P(t|w) P(~t|w) 
mln 0.193 0.005 0.236 0.764 
dlrs 0.188 0.007 0.199 0.801 

Table 3. Common emissions for dlramt 
 Generative Discriminative 

word P(w|t) P(w|~t) P(t|w) P(~t|w) 
Corp 0.071 0.003 0.338 0.662 

General 0.011 0.0003 0.467 0.533 
Inc 0.084 0.005 0.306 0.694 

Interna-
tional 

0.012 0.0006 0.239 0.707 

3.3 

4 

The conditional search space problem 

The failure of the conditionally trained model 
to adequately differentiate states could either be a  
search problem or a shortcoming of using condi-
tional likelihood as an objective.  However, it 
clearly seems to be a search problem.  We can see 
that the models trained with EM not only perform 
better (in F1), but have higher conditional likeli-
hood than the conditionally trained models.  We 
can also see from Figure 5 above that conditional 
likelihood is well correlated with F1.  Even though 
CG will find a local optimum in conditional likeli-
hood, we have the counter-intuitive result that EM 
is in practice a better optimizer of conditional like-
lihood than CG, despite not being even locally op-
timal.  Since CG is locally optimal, the task 
becomes one of finding a better initial parameter 
setting from which to run it. 

Given that the joint models have higher condi-
tional likelihood than the conditional models, an 
obvious choice is to use HMMs trained with EM as 
the input to CG to maximize conditional likeli-
hood.  As Figures 6 and 7 show, running CG after 
EM consistently increased both CLL and F1.  In 
fact, running CG after even a single round of re-
sults in comparable performance gains.  These re-
sults demonstrate that EM is finding a relatively 
promising basin for the conditional likelihood op-
timization, but is not finding a local maximum (nor 
would it be expected to do so).  

Fixed vs. flexible transition structures 

Theoretically flexible structures as a search space 
subsume structures in which some of the parame-
ters are fixed (e.g., certain transitions are fixed at 

Table 4. Common emissions for purchaser 



 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. EM on flexible structure yields lower CL.
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Figure 8. EM on fixed structure yields higher CL. 
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0).  Nevertheless, it has been observed in many 
cases that using (clever) fixed structures often re-
sults in better F1 and in states whose roles are intui-
tively more like what people expect they should be 
(Freitag and McCallum 2000).   

A reason is that by fixing the structure, the 
hidden state sequence becomes less hidden.  This 
means that EM (or even CG) has less work to do, 
and fewer degrees of freedom, because there is less 
room to consider different state sequences.  
Consider the effect of removing the self-transitions 
from the prefix and suffix state of the fixed struc-
ture—in this case, the state sequence would be 
fully determined, because all background emis-
sions must come from the background state with 
the exception of the word immediately preceding 
and immediately following the target.  These must 
be generated by the prefix and suffix state respec-
tively, leaving all the target emissions for the target 
state.  In this case, there is no hidden structure and 
the search space has a unique maximizer for both 
joint and conditional likelihood.  As we increase 
the flexibility of the possible state sequences (ei-
ther by adding self-transitions or by adding more 
states), the search space becomes more complex, 
and the optimization procedures must begin to de-
fine the roles of the states in some manner. 

However, in the fixed structure with self-
transitions, the only flexibility in the search space 
is how early to move into the prefix state and how 
late to move out of the suffix state.  This is re-
flected by the relative strength of those self-
transition probabilities, which is all that qualita-
tively changes across successive iterations of EM. 

In such a constrained space, optimizing joint 
likelihood with EM also does an impressive job of 

maximizing conditional likelihood.4  As Figures 8 
and 9 show, EM does a better job maximizing con-
ditional likelihood for fixed structures than for 
flexible structures.  Thus we see that human intui-
tion about discriminative roles for HMM states in 
information extraction systems is validated by the 
empirical result that this subspace of models has 
higher conditional likelihood than a uniform point 
in the  larger space of more flexible models. 

Increasing model and task complexity 5 

The experiments presented above were conducted 
using small HMMs that can easily be studied and 
understood.  For robust performance, a larger 
number of target and background states is usually 
required.  When training a larger HMM, it be-
comes clearer that one of EM’s primary effects is 
to cluster the background emissions into distribu-
tional clusters and link them to model flat syntactic 
patterns.  For example, Table 5 shows a few se-
lected states from an HMM trained with 7 back-
ground states and 4 target states.  The first two 
states are background states and the last two are 
dlramt states.  Clearly state 5 has been specialized 
to generate prepositions and state 3 has been spe-
cialized to produce nouns, specifically amounts of 
currency (broadly defined).  Similarly state 9 emits 
numbers and state 12 emits number magnitudes.  
The transitions reflect common patterns among 
these states—P(S3|S5) = 0.74 and P(S12|S9) = 
0.94.  This models PPs and compound numbers 
respectively. 

 
 

                                                           
4 Of course, the benefit isn’t just from any constraint, but from 
good constraint. 
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Table 5. EM clusters emissions to differentiate states. 
  

Once emissions have been clustered, the states 
take on specific roles and the transition structure 
quickly becomes determined.  Thus when models 
trained by EM are further optimized for condi-
tional likelihood, CG can recruit these specialized 
states as needed for classification.  In contrast, 
when training CG from the beginning, the mean-
ingful transitions (from background to target and 
back) are few and far between since CG is uninter-
ested in internal background structure.  Thus the 
roles for individual background states are less clear 
and differentiating them is difficult (as we saw in 
section 3.2). 

When running CG after EM on more difficult 
targets with larger models, the behavior is not al-
ways as clean as that shown above.  Conditional 
likelihood is still consistently boosted, but the cor-
relation between training CL and test F1 is not al-
ways as strong.  In future research we will continue 
analyze more complex HMMs and look for better 
techniques for finding promising basins in which 
to maximize conditional likelihood. 

6 Conclusion 

Ideally, one would maximize test set F1 for IE.  
The closest one can get to this is to maximize train-
ing F1, which is generally only possible for discrete 
search, such as structure search.  We have shown 
that conditional likelihood is better correlated with 
F1 than joint likelihood is.  For simple enough ex-
amples, this can be usefully maximized directly.  
However, an ironic result is that EM can some-
times be the best available tool for the broad 
maximization of CL and F1.  This is partially be-
cause, whatever else it does right or wrong, EM 
naturally acts as a distributional clustering tool 
(Rooth et al. 1999; Clark 2000). To the extent that 
having states represent distributional word classes 
is better than having them represent nothing at all, 
EM is a useful first step.  Improved results can 
then be gained in two ways.  First, by maximizing 
CL starting from the output of EM, since CG 
maximization is a good tool for local improvement 

of CL.  Second, by constraining structure, we can 
force EM to give parameters with better CL and F1 
than it would otherwise produce.  

This paper has developed on developing theo-
retical understanding of the empirical successes 
and failures of HMMs for information extraction 
trained to maximize joint likelihood by EM, and 
trained to maximize conditional likelihood. Future 
work will emphasize making use of this under-
standing in large-scale applications. 
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