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Abstract 

In this paper, we examine Boosted Wrapper Induction (BWI) as an exemplar of 

recent rule-based information extraction techniques by conducting experiments on a 

wider variety of tasks than has previously been studied, including several natural text 

document collections.  We provide a systematic analysis of how each of BWI’s 

algorithmic components, particularly boosting, contributes to its performance over 

comparable methods.  We show that the benefit of boosting comes from the ability to 

reweight examples to learn specific rules (resulting in high precision) combined with 

the ability to continue learning rules after all positive examples have been covered 

(resulting in high recall).  We also propose the SWI-Ratio as a quantitative measure 

of the regularity of an extraction task, and show that this ratio is a strong indicator of 

IE performance.  Based on these results, we present an overview of the current 

successes and limitations of rule-based IE systems as a whole.  Specifically, we 

address limitations in the sources of information made available to IE methods, the 

current representations used by these system, and the relationship between 

confidence values returned during extraction and true probabilities.  In this analysis, 

we investigate including grammatical and semantic information for natural text 

documents, as well as parse tree and attribute-value pair information for XML and 

HTML documents.  We show experimentally that incorporating even limited 

grammatical information can improve both the regularity and performance of natural 
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text extraction tasks.  We conclude with novel suggestions for enriching the 

representational power of rule-based IE methods to exploit these and other types of 

regularities. 

1 Introduction 

Freely available text is abundant.  Thousands of new web pages appear everyday.  News, 

magazine, and journal articles are constantly being created.  E-mail has become one of 

the most popular ways of communicating.  All these trends result in an enormous amount 

of available text in digital form.  This repository of text is an untapped resource of 

information.  However, identifying specific desired information is not always an easy 

task.  Information extraction (IE) is the task of extracting relevant fragments of text from 

larger documents to be processed later in some automated way such as responding to a 

user query.  Examples of IE tasks include identifying the speaker featured in a talk 

announcement, finding proteins referenced in a biomedical journal article, and extracting 

the list of credit cards accepted by a restaurant from an online review. 

A variety of systems and techniques have been developed to address the 

information extraction problem.  Many successful techniques have included statistical 

models such as n-gram models, Hidden Markov Models and probabilistic context free 

grammars (Califf, 1998).  Recently, though, rule-based systems that employ some form 

of machine learning have become increasingly popular and successful.  These systems 

have taken a variety of different approaches, but have all recognized a number of 

common key facts.  First, creating rules by hand is extremely difficult and time 

consuming (Riloff, 1996).  For this reason, most of the systems generate the rules given 

raw unlabeled data or partially labeled data.  Second, people have recognized that trying 

to generate a single, general rule for extracting a given field is often impossible (Muslea, 

et. al., 1999).  Instead, most of the systems attempt to learn a number of rules that cover 

the training set and then combine these rules in some way. 

One recent technique for generating rules in the realm of text extraction is 

wrapper induction.  Wrapper induction techniques have proved to be fairly successful for 

IE tasks in highly structured domains, such as web pages generated from a template script 
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(Muslea, et, al., 1999; Kushmerick, 2000).  However, because of their specificity, these 

methods do not generalize well to more natural texts, thus limiting their applicability. 

Recent research in improving weak classification rules using boosting (Shapire, 

1999) has led to a method for increasing the coverage of a weak learner by repeatedly 

learning rules that focus on portions of the decision space that previous rules have found 

difficult.  Boosting works by continually reweighting the training examples, and using the 

weak learner to learn a new rule each time, stopping after a fixed number of iterations.  

This collection of rules is then combined by a weighted vote (related to their individual 

performance).  Boosting has been shown theoretically to perform well and performs well 

in practice. 

Boosted Wrapper Induction (BWI) is an IE technique that uses AdaBoost to 

generate a more general extraction procedure from a set of specific wrappers (Freitag, et. 

al., 2000).  BWI has been shown to do well on a wide variety of tasks with partially 

structured and highly structured documents, but specifically how boosting contributes to 

this performance increase has not been investigated.  Furthermore, BWI has been 

proposed as a potential solution for natural text, but little has been done to examine its 

performance in this challenging domain. 

In this paper, we investigate the benefit of boosting in BWI and also its 

performance on natural text.  We do this by comparing BWI’s use of boosting with 

wrapper induction against another simple and common approach to combining weak 

learners, sequential covering.  With sequential covering, the rules are ordered in some 

way according to “quality.”  The best rule is chosen, and all of the examples that the rule 

correctly classifies are removed from the training set.  The process is then repeated until 

the entire training set has been covered.  For a more detailed description of sequential 

covering see (Cardie, 2001).  Sequential covering has been used in a number of systems 

(Califf, 1998; Clark, et. al., 1989; Michalski, 1980; Muslea, et. al., 1999; Quinlan, 1990) 

because it is fairly simple to implement, tends to generate understandable and intuitive 

rules and has achieved good results. 

This paper is broken down into a number of sections.  In section 2, we briefly 

describe BWI and related techniques, providing a formalization of the problem, along 

with a review of relevant terminology.  In section 3, we present experimental results 
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comparing these different rule-based IE methods on a wide variety of document 

collections.  In section 4, we analyze the results of these experiments in more detail, with 

specific emphasis on how boosting affects BWI’s performance, and how performance 

relates to the regularity of the extraction task.  In section 5, we present the SWI-Ratio as 

an objective measure of task regularity, and further examine the connection between 

regularity and performance.  In section 6, we transition to a general discussion of what 

this class of rule-based IE methods is able to learn from document collections.  In section 

7, we point out a number of limitations of current methods, focusing on what information 

is considered and how it is represented, how results are scored and presented, and the 

efficiency of training and testing.  Finally, in section 8, we suggest improvements to 

address these limitations, and we provide experimental results that show that including 

grammatical information in the extraction process can increase regularity and 

performance. 

2 Overview of algorithms and terminology 

In this section, we present a brief review of the BWI approach to information extraction, 

including the formal problem statement, the algorithms used, and important terminology.  

We also present a simplified variant of the BWI algorithm, called SWI, which will be 

used to analyze BWI and related algorithms. 

2.1 IE as a classification task 

Most of the material in this section can be found in (Freitag, et. al, 2000).  We present an 

abridged version here for convenience, starting with a review of relevant vocabulary.  

Each document can be broken up into a sequence of tokens.  A token is one of three 

things: an unbroken string of alphanumeric characters, a punctuation character, or a 

carriage return.  The problem of information extraction is to extract some number of 

tokens from a test document.  To do this, we reformulate the IE problem as a 

classification problem.  Instead of thinking of the problem as a string of tokens, we look 

at the problem as a function over boundaries.  A boundary is the space between two 

tokens.  Notice that a boundary is not something that is actually in the text (such as white 

space), but just comes about from the parsing of the text into tokens.  We want to 

approximate two functions from a boundary to the binary set {0,1}: one function that is 1 
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iff the boundary is the beginning of a field to be extracted, and one function that is 1 iff 

the boundary is the end of a field.  This transformation from a segmentation problem to a 

boundary classification problem is common and is also used by (Shinnou, 2001) to find 

word boundaries in Japanese text (since written Japanese does not use spaces). 

These approximation functions are represented as sets of boundary detectors (or 

just detectors).  A detector is a pair of token sequences, 〈p, s〉.  A detector matches a 

boundary iff the prefix string of tokens, p, matches the tokens before the boundary and 

the suffix string of tokens, s, matches the tokens after the boundary.  For example, the 

detector 〈Who:, Dr.〉 would match “Who: Dr. John Smith” between the ‘:’ and the ‘Dr’.  

Once the beginning and ending functions are approximated, extraction is performed by 

identifying the beginning and end of a field and extracting the text between the two 

points. 

BWI separately learns two sets of boundary detectors for recognizing the 

beginnings and endings of a target field to extract.  At each iteration, BWI learns a new 

detector, and then uses AdaBoost to reweight all the examples in order to focus on 

portions of the training set that the current rules are unable to match.  Once this process 

has been repeated for a fixed number of iterations, BWI returns the two sets of learned 

detectors (fore detectors, F, and aft detectors, A), as well as a histogram over the lengths 

(number of tokens) of the target field, H. 

2.2 Sequential Covering Wrapper Induction (SWI) 

SWI uses the same basic framework as BWI with some slight modifications to the 

selection of rules.  The basic algorithm for SWI can be seen in Figure 1.  SWI generates F 

and A independently by calling the GenerateDetectors procedure.  The 

GenerateDetectors procedure is a basic sequential covering rule learner.  At each 

iteration through the while loop, a new boundary detector is learned, consisting of a 

prefix part and a suffix part.  Like BWI, the best detector is generated by starting with 

empty prefix and suffix sequences.  Then, the best token is found to add to either the 

prefix or suffix by exhaustively searching all possible extensions of length L.  This is 

repeated, adding one token at a time, until the detector being generated no longer 

improves (as determined by the scoring function). 
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Once the best boundary detector has been found, it is added to the set of detectors 

to be returned (either F or A).  Before continuing, all the positive examples that were 

covered by the new rule are removed, leaving only uncovered examples.  When this set 

of rules covers all the positive training examples, the loop ends, and the set of detectors 

that now cover all the positive training examples is returned.  

A few things should be clarified at this point.  There is a distinction between the 

actual text, which is simply a set of tokens, and the two training functions, which indicate 

whether a boundary is the start of end of a field to be extracted.  When the algorithm 

removes the positive examples that are covered by a rule, the values in training function 

are set so that they are no longer positive or negative, but the actual sequence of tokens is 

not changed, as this would alter the data inappropriately. 

There are a couple of key differences between BWI and SWI.  First, as mentioned 

above, with sequential covering the training examples are altered by changing the set of 

positive examples.  In BWI, the examples are reweighted but are never removed.  

Second, the scoring functions for the extensions and detector are slightly different.  We 

propose two different versions of SWI.  The basic SWI algorithm uses a simple greedy 

model.  An extension or detector is scored simply by the number of positive examples 

that it covers without covering any negative examples.  So, if a detector misclassifies 

even one example (i.e. covers a negative example), it is given a score of zero.  We call 

this version Greedy-SWI.  A second version of SWI, called Root-SWI, is also 

implemented and uses the same scoring function as BWI.  Given the sum of the weights 

SWI: training sets S and E -> two lists of detectors and length histogram 
  F = GenerateDetectors(S) 
  A = GenerateDetectors(E) 
  H = field length histogram from S and E 
  return ‹F,A,H› 
 
GenerateDetectors: training set Y(S or E) -> list of detectors 
   prefix pattern p = [] 
   suffix pattern s = [] 
   list of detectors d 
 
   while(positive examples are still uncovered) 
     〈〈 p, s〉〉  ßß  FindBestDetector() 
     add 〈〈 p, s〉〉  to d 
     remove positive examples covered by 〈〈 p, s〉〉  from Y 
     p, s = [] 
    
   return d 
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of the positive examples covered by the extension or detector, W+, and the sum of the 

weights for the negative examples covered, W-, the score is calculated to minimize 

training error (Cohen, et. al., 1999): 

−+ −= WWscore  

Notice that for Root-SWI these sums will just reflect the number of examples covered 

because the examples are all given the same weight.  The final difference between BWI 

and SWI is that BWI terminates after a predetermined number of boosting iterations.  In 

contrast, SWI terminates as soon as all of the positive examples have been covered.  This 

turns out to be a key difference between the two different methods.   

3 Experiments 

In this section, we describe the data sets used for our set of experiments, our setup and 

methods, and the objective results of our tests. We provide an analysis of the results in 

the next section. 

3.1 Data sets and IE tasks 

In order to determine the differences between BWI, Greedy-SWI and Root-SWI we 

examine three algorithms on 15 different information extraction tasks from 8 different 

document collections.  Many of these tasks are fairly standard and have been used in 

testing a variety of IE techniques.  The tasks can be broken into three sets: natural 

(unstructured), partially structured, and highly structured.  The breadth of these 

collections allows for a better analysis of the algorithms on a wider spectrum of tasks 

than has previously been studied.  The natural text documents come from biomedical 

journal abstracts and contain little obvious structural information.  The partially 

structured documents closely resemble natural text, but contain more high level structure 

and canonical formatting.  These documents still consist primarily of natural language, 

but contain some regularities in formatting and annotations.  For example, it is common 

for key fields to be preceded by an identifying label (e.g. “Speaker: Dr. X”), though this 

is not always the case.  The highly structured documents consist of web pages that have 

often been automatically generated, and contain reliable regularities in formatting, 

including location of content, punctuation and style, and non-natural language such as 

HTML tags.  The partially structured and highly structured document collections were 
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obtained primarily from (RISE, 1998) and the natural text documents were obtained from 

the National Library of Medicine’s MEDLINE abstract database (National Library of 

Medicine, 2001). 

There are two collections of natural text documents, both made up of individual 

sentences from MEDLINE abstracts.  The first collection consists of 555 sentences 

tagged with protein names, and their subcellular locations.  These sentences were 

automatically selected and tagged from a larger collection of documents by searching for 

known proteins and locations contained in the Yeast-Protein-Database (YPD).  Because 

of this labeling procedure, the labels are incomplete and sometimes inaccurate.  Ray and 

Craven estimated a 10-15% error rate in labeling (Ray, et. al., 2001).  The second 

collection consists of 891 sentences, containing genes and their associated diseases, as 

identified using the Online-Mendelian-Inheritance-In-Man (OMIM) database, and is 

subject to the same noisy labeling.  Both these collections have been used in other 

research, including (Ray, et. al., 2001) and (Eliassi-Rad, et. al., 2001). 

It should be noted that these document collections originally contained many 

sentences without labeled tuples because they were built for extracting relations.  

Therefore, only in cases where both elements of the relation were found was any label 

added.  Because BWI is designed to extract only single fields, and not relations, we were 

forced to remove these documents, since many of them in fact contained examples of one 

of the desired fields, but as they were unlabeled, they presented BWI with contradictory 

information.  For example, a good protein extraction rule would pull out many of the 

labeled proteins, but also many of the unlabeled proteins, and thus it would be considered 

a poor rule (and the unlabeled documents outnumbered the labeled documents by almost 

an order of magnitude).  This still left a challenging set of information extraction tasks, 

but as a result our performance on these collections is not directly comparable to 

performance reported on the entire set of documents, when used to extract relations. 

For the partially structured extraction tasks, we examine three different document 

collections.  The first two were taken from RISE, and consist of 486 speaker 

announcements (SA) and 298 Usenet job announcements (Jobs).  In the speaker 

announcement collection, four different fields were extracted:  the speaker’s name (SA-

speaker), the location of the seminar (SA-location), the starting time of the seminar (SA-
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stime) and the ending time of the seminar (SA-etime).  In the job announcement 

collection, three fields were extracted:  the message identifier code (Jobs-id), the name of 

the company (Jobs-company) and the title of the available position (Jobs-title). 

We constructed the third partially structured documents from a collection of 630 

MEDLINE journal citations.  These documents contain full MEDLINE article citations 

for hip arthroplasty surgery, which consist of author/journal/publication info, MeSH 

headings (a standard controlled vocabulary of medical subject keywords), and other 

related information, including the text of the paper’s abstract about 75% of the time.  The 

task is to identify the beginning and end of the abstract text, if the citation includes one 

(AbstractText).  The abstracts are generally large bodies of text, but without any 

consistent marker for the beginning or end, and the information that precedes or succeeds 

the abstract text also varies from citation to citation. 

Finally, the highly structured tasks are taken from three different document 

collections, also in RISE:  20 web pages containing restaurant descriptions from the Los 

Angeles Times (LATimes), where the task is to extract the list of accepted credit cards 

(LATimes-cc); 91 web pages containing restaurant reviews from Zagat’s Guide to Los 

Angeles restaurants (Zagat’s), where the task is to extract the restaurant’s address 

(Zagats-addr); and 10 web pages containing responses from an automated stock quote 

service (QS), where the task is to extract the date of the response (QS-date).  Note that 

although these collections tend to contain a small number of documents, many of the 

individual documents are actually comprised of several separate entries (e.g. there are 

often multiple stock quote responses or restaurant reviews per web page). 

3.2 Experimental setup 

The performance of the different rule-based IE methods on these data sets was evaluated 

by three different standard metrics: precision, recall, and F1 (the harmonic mean between 

precision and recall).  Each result presented is the average of 10 random 75/25 train/test 

splits.  For all algorithms, a lookahead value, L, of 3 tokens was used.  For the natural 

and partially structured texts (YPD, OMIM, SA, Jobs, and AbstractText), BWI’s default 

wildcard set was used, and for the web pages (LATimes, Zagat’s, and QS), the default 

lexical wildcards were also used.  A graphical summary of our results can be seen in 

Figure 2.  For complete numerical results, see Table 1 at the end of this paper. 
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To understand the differences between BWI and SWI, we performed four sets of 

tests.  First, we ran BWI with the same number of rounds of boosting as was used in 

(Freitag & Kushmerick, 2000): for the, YPD, OMIM, SA, Jobs, and AbstractText 

document collections, 500 rounds of boosting were used; for the LATimes, Zagat’s, and 

QS document collections, 50 rounds were used.  Next, we ran Greedy-SWI and Root-

SWI on the same tasks until all of the examples were covered.  The actual number of 

iterations for which these algorithms ran varied across the different IE tasks.  These 

numbers of iterations are presented in Table 2 at the end of the paper.  Finally, we ran 

BWI for the same number of iterations that it took for Root-SWI to complete each task 

(e.g. 323 rounds for YPD-protein, 1 round for QS-date, etc.). 

3.3 Experimental results 

To investigate whether BWI outperforms the greedy approach of SWI, we compared 

Greedy-SWI and BWI.  BWI appears to perform better than SWI—the F1 values for 
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Figure 2: Performance of the four IE methods examined in this paper, separated by overall regularity of 

extraction task (indicated above each chart), averaged in each case over the set of tasks in the given domain. 
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BWI are higher for all the highly structured and natural text tasks studied.  Greedy-SWI 

has slightly higher F1 performance on two of the medium structured tasks, but 

considerably lower performance on the other three.  Generally, Greedy-SWI has slightly 

higher precision, while BWI tends to have considerably higher recall.   

Given these results, the logical next step is determining what part of BWI’s 

success comes from the difference in scoring functions used by the two algorithms, and 

what part comes from how many rules are learned.  To explore the first of these 

differences, we compared Greedy-SWI and Root-SWI, which differ only by their scoring 

function.  Greedy-SWI tends to have higher precision while Root-SWI tends to have 

higher recall.  However, they have similar F1 performance, a result that is illustrated 

further by comparing BWI to Root-SWI.  BWI still has higher F1 performance than 

Root-SWI in all but three medium structure tasks, despite the fact that they use an 

identical scoring function. 

There are only two differences between BWI and Root-SWI.  First, Root-SWI 

removes all positive examples covered after each iteration, whereas BWI merely 

reweights them.  Second, Root-SWI terminates as soon as all positive examples have 

been covered, whereas BWI continues to boost for a fixed number of iterations.  

Examining Table 2 reveals that Root-SWI always terminates after many fewer iterations 

than were designated for BWI.  In (Freitag, et. al., 2000), they examined BWI’s 

performance as the number of rounds boosting increased, revealing that in many cases, 

results still improved even after all 500 iterations. 

To investigate this idea further, we ran BWI for the same number of iterations as 

it took Root-SWI to complete each task (we call this method Fixed-BWI).  Recall that the 

number of rounds Fixed-BWI runs for depends on the extraction task.  Here the results 

appear to vary qualitatively with the level of structure in the domain.  In the highly 

structured tasks, Fixed-BWI and Root-SWI perform nearly identically.  In the medium 

structured tasks, Fixed-BWI tends to have exhibit higher precision but lower recall than 

Root-SWI, resulting in similar F1 values.  In the natural text tasks, Fixed-BWI has 

considerably higher precision and recall than Root-SWI. 
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4 Analysis of experimental results 

In this section, we discuss our experimental results from two different axes.  We examine 

the effect of the algorithmic differences of the IE methods studied, and we look at how 

overall performance is affected by the inherent difficulty of the IE task. 

4.1 Why BWI outperforms SWI 

The set of experiments performed yield a detailed understanding of how BWI’s 

algorithmic differences allow it to consistently achieve higher F1 values than SWI.  The 

root of these differences is that BWI uses boosting to learn rules as opposed to set 

covering.  Boosting has two complementary effects.  First, boosting continually reweights 

all positive and negative examples to focus on the increasingly specific problems that the 

existing set of rules is unable to solve.  This tends to yield high precision rules, as is clear 

from observing that Fixed-BWI consistently has higher precision than Root-SWI, even 

though they use the same scoring function and learn the same number of rules.  While 

Greedy-SWI also has high precision, this is achieved by using a scoring function that 

doesn’t permit any negative examples to be covered by any rules.  This results in a lower 

recall than the other three methods, because it is hard to learn general rules with wide 

coverage without covering some negative examples. 

Second, boosting allows BWI to continue learning even when the existing set of 

rules already covers all the positive training examples.  Examples are merely reweighted 

after each iteration, rather than being removed entirely.  In contrast, SWI is inherently 

limited in the total number of boundary detectors it can learn from a given training set.  

This is because every time a new detector is learned, all matching examples are removed, 

and training stops when there are no more positive examples left to cover.  Since each 

new detector must match at least one positive example, the number of boundary detectors 

SWI can learn is at most equal to the number of positive examples in the training set (and 

usually many fewer detectors are learned because multiple examples are covered by 

single rules).  The ability to continue learning rules means that BWI can not only learn to 

cover all the positive examples in the training set, but it can widen the margin between 

positive and negative examples, learning redundant and overlapping rules, which together 

better separate the positive and negative examples. 
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4.2 Rule-based IE methods and task difficulty 

These two assets of boosting (learning specific rules, but learning more of them) together 

give BWI the consistent advantage in F1 performance over SWI that was observed 

empirically above.  However, the difficulty of the extraction task clearly also has a 

pronounced effect on the performance of all four methods.  We now turn from this 

general analysis to a specific investigation of each domain. 

4.2.1 Highly structured 

This set of tasks is by far the easiest for all methods to deal with—it’s no coincidence tha t 

they’re often referred to as “wrapper tasks” as learning the regularities in automatically 

generated web pages was precisely the problem for which wrapper induction was 

originally proposed as a solution.  All methods have near-perfect precision, and SWI 

tends to cover all examples with only a few iterations. 

Surprisingly, the same level of performance is not present for SWI’s recall.  

While these tasks are all highly regular, the regularities learned on the first couple of 

iterations aren’t the only important ones.  Neither changing the scoring function from 

greedy to root nor changing the iteration method from set covering to boosting fixes this 

problem, as Root-SWI and Fixed-BWI have virtually identical performance to that of 

Greedy-SWI.  However, because BWI continues to learn new and useful rules even after 

all examples are covered, it is able to learn secondary regularities that increase its recall 

and capture the differences that are missed by a smaller set of rules. 

4.2.2 Medium structured 

In this set of collections, we see the largest variation in performance by manipulating the 

components of the basic algorithms investigated.  Changing Greedy-SWI’s scoring rule 

to use BWI’s root scoring function results in a tradeoff between increased recall and 

decreased precision and also a slightly higher F1.  By allowing rules to cover some 

negative examples, more general rules can be learned that have broader coverage (higher 

recall), but also result in some negative examples being covered as well (lower  

precision).  Root-SWI consistently terminates after fewer iterations than Greedy-SWI, 

confirming that it is indeed covering more examples with fewer rules. 

Changing from set covering to boosting as a means of learning multiple rules also 

results in a precision/recall tradeoff with little change in F1.  As mentioned earlier, 
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boosting reweights the examples to focus in on the hard problems.  This results in rules 

that are very specific (higher precision), but also very local (lower recall).  Boosting also 

results in a slower learning curve (measured in performance vs. number of rules learned), 

because positive examples are often covered multiple times before all examples have 

been covered once.  SWI explicitly removes all covered examples, focusing at each 

iteration on a completely new set of examples.  The result is that Fixed-BWI can’t learn 

enough rules to overcome its bias towards precision in the number of iterations Root-SWI 

takes to cover all the positive examples.  However, if the full number of iterations is used, 

BWI compensates for this slow start by learning enough rules to ensure high recall 

without sacrificing this high precision.  This ability to keep learning rules is only possible 

when using boosting, because set covering will always stop as soon as it runs out of 

examples to cover. 

4.2.3 Natural text 

Extensive testing of BWI on natural text has not been previously done, though it was the 

clear vision of Freitag and Kushmerick to pursue research in this direction.  As can be 

seen in Figure 2, there are a number of qualitative differences in performance on the 

natural text documents when compared to the more regular collections previously 

studied.  All the methods have considerably lower precision, despite the inherent high 

precision bias of the boundary detectors.  All the methods also experience a large 

decrease in recall.   This is mainly due to the fact that the algorithms often learn little 

more than the specific examples seen during training, which usually don’t appear again in 

the test set.  Looking at the specific boundary detectors learned, most simply memorize 

individual labeled instances of the target field, ignoring context altogether (i.e. the fore 

detectors have no prefix, and the target field as the suffix, and vice versa for the aft 

detectors).  Changing SWI’s scoring function from greedy to root results in a marked 

decrease in precision with only a tiny increase in recall.  Negative examples are allowed 

to be covered, but the rules learned aren’t sufficiently more general to increase coverage 

noticeably. 

Unlike with the partially and highly structured tasks, Fixed-BWI has both higher 

precision and higher recall than Root-SWI.  The high precision is explainable as before 

because reweighting focuses on difficult problems and learns specific solutions.  In the 
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more regular document collections, this also meant that the rules were too local.  In this 

case, however, it actually increases recall.  The reason is that while already covered 

examples are down-weighted during boosting, they are not removed entirely as with SWI.  

Thus, BWI remains sensitive to the accuracy and coverage of all the rules it learns.  In 

contrast, SWI quickly eliminates the regularities that can be easily found, and then begins 

covering the examples one at a time.  Thus, it completely ignores the performance of new 

rules on already covered examples.  This problem is compounded by the fact that BWI 

reweights both positive and negative examples, while SWI never removes negative 

examples.  This is particularly troublesome if we consider that these data sets were 

labeled automatically, and are partially inaccurate (as mentioned in 3.1).  SWI only 

covers positive examples once, and it is more sensitive to negative examples, so the 

perceived difference in regularity between the training and test set becomes more 

pronounced as the algorithm continues to eliminate positive examples. 

Unlike in the more structured document collections, allowing BWI to run for the 

full 500 iterations caused it to perform worse than  Fixed-BWI, suggesting that the extra 

iterations result in overfitting.  Because of the irregularity of the data, Fixed-BWI runs for 

a larger number of iterations than on easier tasks, and thus the extra benefit of continuing 

to boost is diminished.  Furthermore, these last rounds of boosting tend to concentrate on 

only a few highly weighted examples, meaning that unreliable rules are learned, which 

are more likely to be artifacts of the training data than true regularities. 

5 Quantifying task regularity 

In addition to the observed variations resulting from changes to the scoring function and 

iteration method of BWI and SWI, it is clear that the inherent difficulty of the extraction 

task is also a strong predictor of performance.  Highly structured documents such as those 

generated from a database and a template are easily handled by all the algorithms we 

tested, whereas natural text documents are uniformly more difficult.  It is thus interesting 

to investigate methods for quantifying the regularity of a document set beyond the broad 

classes used thus far. 
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5.1 SWI-Ratio as a measure of task regularity 

We propose that a good measure of the regularity of an extraction task is the ratio of the 

number of iterations SWI takes to cover all the positive examples to the total number of 

positive examples in the task.  We call this measure the SWI-Ratio, for obvious reasons.  

In the most regular limit, a single rule would cover an infinite number of documents, and 

thus the SWI-Ratio would be 1/� = 0.  At the other extreme, in a truly irregular set of 

documents, SWI would have to learn a separate rule for each positive example (i.e. there 

would be no generalization possible), so for N positive examples, SWI would need N 

rules, for an SWI-Ratio of N/N = 1.  Notice that since each SWI rule must cover at least 

one positive example, the number of SWI rules learned for a given document set will 

always be less than or equal to the total number of positive examples, and thus the SWI-

Ratio will always be between 0 and 1, with a lower value indicating a more regular 

extraction task. 

SWI-Ratio is a meaningful and well-motivated measure of task regularity for 

several reasons.  First, it is a relative measure with respect to the amount of text, so one 

can use it to compare regularity of small and large documents alike.  Second, it is general 

and objective, because SWI is such a simple algorithm (essentially equivalent to greedy 

set covering), and since SWI’s scoring rule doesn’t allow any negative examples to be 

covered, it is an unbiased account of how many non-overlapping rules one would need to 

actually cover every positive example without covering any negative examples.  Finally, 

it is easy and uncontroversial to attain.  There are no free parameters to set (other than the 

lookahead for extending boundary-detector rules, which we fixed across all our tests), 

and it is simple and relatively efficient to run SWI before or while running any other 

technique. 

 

5.2 Performance and task regularity 

In addition to the clear differences in performance between the three classes of extraction 

tasks presented in the previous sections, there is also wide variation within each 

document collection.  Although the results in Figure 2 are easily interpreted, we must be 

careful not to forget that these values represent averages over several extraction tasks.  

However, using the SWI-Ratio, we can now compare algorithms on a per-task basis.  
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This will reveal in greater detail both how performance is related to task difficulty, and 

whether BWI reliably outperforms SWI. 

 In Figure 3, the F1 of Greedy-SWI and BWI are plotted for each task versus its 

SWI-Ratio.  As noted in section 4, BWI performs better than Greedy-SWI on all but two 

tasks and the difference between the F1 for those two tasks is small.  By plotting the two 

algorithms’ performance versus the SWI-Ratio, we can examine how the two algorithms 

perform as the regularity of the documents decreases.  There is a consistent decline in the 

performance as the regularity of the document decreases for both algorithms.  Also, there 

does not seem to be a significant divergence in performance between the two algorithms 

as the regularity of the task decreases.  So, although BWI appears to reliably outperform 

SWI, both these algorithms are still limited by the regularity of the text. 

6 What rule-based IE methods are learning 

Having investigated BWI as an important new IE technique, and having understood its 

specific advantages over comparable strategies, we now turn to the more general issue of 

rule-based IE methods and their performance as a class.  Specifically, we investigate the 

relevant information that these methods do and do not appear to be learning during 

training.  
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Figure 3: F1 performance for BWI and Greedy-SWI on the 15 different extraction tasks, plotted vs. the 
SWI-Ratio of the task, with separations between highly structured, partially structured, and natural text. 
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As has been seen in the experimental section and in numerous other papers, rule-

based systems perform quite well with fairly structured tasks.  If the target field to be 

extracted is canonically preceded or followed by a given set of tokens (or tokens of a 

distinct type, matched by the wildcards used), this context is readily learned by boundary 

detectors.  This is a common occurrence in highly structured and partially structured 

texts, where fields are often preceded by identifying labels (e.g. “Speaker: Dr. X”), or 

followed by the same pieces of information (e.g. in the Zagat’s surveys, the restaurant 

address is almost always followed by its telephone number, which is easily distinguished 

from the rest of the text).   

Surprisingly, there is a good deal of this type of regularity to be exploited even in 

more natural texts.  For example, when extracting the locations where proteins are found, 

“located in” and “localizes to” were found to be common prefixes, and were learned early 

on by BWI.  This is reflects the fact that people often refer to a given type of information 

in a specific context, and thus specific lead-in words or following words are common and 

used in many instances. 

While rule-based IE methods are primarily designed to identify the contexts in 

which target fields occur, it is important to realize that BWI and other methods are also 

learning some things about the regularities that occur in the fields being extracted.  In the 

case of BWI, boundary detectors extend into the edge of the target field as well as into 

the local context, so the fore detectors often learn what the first few tokens of the target 

field look like (that is, if the field tends to have a regular beginning), and the aft detectors 

often learn what the last few tokens look like.   

With short fields, this means that in many cases, individual boundary detectors are 

doing nothing more than memorizing instances of the target field.  This is often the case 

in the MEDLINE articles, where specific gene names, protein names, etc. get memorized 

when their context isn’t otherwise helpful.  However, with longer fields, there is still 

important information learned.  For example, in the MEDLINE citations, the abstract text 

often starts with phrases like “OBJECTIVE: ”, or “We investigated…” 

In addition to learning the canonical starting and ending tokens in the target field, 

BWI learns a length distribution of the number of tokens in the extracted field.  

Specifically, field lengths are recorded for each training example, and then this histogram 
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is normalized into a probability distribution once training is complete.  In BWI, this is the 

only piece of information that explicitly ties the fore detectors and aft detectors together.  

Nevertheless, this information can be extremely useful.  When BWI tests on a new 

document, it first notes every fore and aft detector that fire, and then must pair them up to 

find specific token sequences.  BWI only keeps a match that is consistent with the length 

distribution.  Specifically, it will drop matches whose fore and aft boundaries are farther 

apart or closer together than has been seen before during training, and given two 

overlapping matches of equa l detector confidence, it will prefer the match whose length 

has been seen more times.  

In all but the most regular IE tasks, a single extraction rule is insufficient to cover 

all the positive examples, so it is necessary to learn a set of rules that capture different 

regularities.  An important piece of information to capture, then, is the relative 

prominence of these different types of patterns, because it distinguishes the general rules 

from the exceptional cases.  In the case of BWI, this information is learned explicitly by 

assigning each boundary detector a confidence value, which is proportional to the total 

weight of positive examples covered by the rule during training, and is thus broadly 

reflective of the generality of the rule.  In SWI, rules tha t cover the most examples are 

learned first, so there is a ranking present as well.  

7 Limitations of BWI (what rule-based IE methods aren’t learning) 

While BWI and similar methods currently achieve high levels of performance on many 

document collections, there is substantial room for improvement.  There are useful pieces 

of information that most IE methods currently ignore that might increase the apparent 

regularity of the extraction task were they available.  There are also important facts and 

clues about many extraction tasks that the current representations of such methods are 

unable to capture.  Finally, there are issues with the speed and efficiency of current 

methods, as well as how matches are scored and presented, that limit the usefulness of 

these systems.  We investigate each of these areas in more detail in this section.  

7.1 Representation 

BWI learns sets of fore and aft boundary detectors and a histogram of the lengths of the 

fields.  These boundary detectors are short sequences of specific words or wildcards that 
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directly preceed or succeed the target field or that are found within the target field.  As a 

result of this representation, there are valuable sources of regularity that cannot be 

captured with the current representation, such as a more detailed model of the field to be 

extracted, the global location of the field within the document, and any structural 

information such as that exposed by a grammatical parse or an HTML/XML document 

tree. 

7.1.1 Weak model of the content being extracted 

Clearly an important clue in finding and extracting a particular fact is recognizing what 

relevant fragments of text look like.  As mentioned in the previous sections, BWI learns 

to recognize the canonical beginnings and endings of the target field, as well as a 

distribution over the length of the extracted field.  However, both these pieces of 

information are learned in a superficial manner, and much of the regularity of the field is 

ignored entirely. 

Currently, BWI normalizes its frequency counts of field lengths in the training 

data without any type of smoothing or binning.  This means that any candidate field to be 

extracted whose length is not precisely equal to that of at least one target field in the 

training data will be categorically dismissed, no matter how compelling the boundary 

detection.  While this does not tend to cause problems for very short fields (because there 

are only a few possible lengths), it is a tremendous problem for fields with a wide 

variance of lengths. 

For example, in the MEDLINE citations task, the abstract texts to be extracted 

have a mean length of 230 tokens, with a standard deviation of 264 tokens.  With only 

462 positive examples of abstracts (in 630 citations), it’s not surprising that many 

reasonable token lengths are simply never seen.  When running our experiments on this 

document collection, we had to set BWI to ignore all length information.  Ignoring the 

length information resulted in F1 increasing from .1 to .97.  This problem could 

obviously be remedied by smoothing the distribution somehow, or by at least binning the 

lengths prior to normalizing. 

Besides the length distribution, the only other information BWI learns about the 

content of the target field comes from boundary detectors that overlap into the field.  

While for short fields this can mean memorizing entire instances of the target field, in 
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most cases there is more information about the canonical form of the target field that 

could be captured and exploited.  There has been a great deal of work on modeling 

fragments of text to identify them in larger documents, most under the title of Named-

Entity Extraction.  For example, (Baluja, 1999) report impressive results on finding 

proper names in free text, using only models of the names themselves, based on 

capitalization, common prefixes and suffixes, and other word-level features.  NYMBLE 

is another notable work in this field (Bikel, 1997).  Perhaps combining these field-finding 

methods with BWI’s context-finding methods would yield superior performance in both 

domains. 

7.1.2 Limited expressiveness of boundary detectors  

Boundary detectors were designed to capture the flat, local context of the field to be 

extracted by learning short sequences of surrounding tokens.  This is the source of their 

success and their failure.  On the one hand, they are good at capturing regular, sequential 

information around the field to be extracted, resulting in high precision.  On the other 

hand, the high precision design of current boundary detectors tends to result in rules 

having poor recall (Freitag et. al., 2000).  This is not so much a problem for highly 

structured tasks, because there are only a few regularities that need to be captured.  

However, these rules are less effective in partially structured and natural texts, because 

regularities in context are less consistent and reliable.  This results in many rules being 

learned that only cover one or a few examples.  

Another limitation of existing boundary detectors is that they completely ignore 

any grammatical structure of sentences and a great deal of information present in 

HTML/XML documents.  That is, boundary detectors can only capture information about 

the tokens that appear directly before or after the target field in the linear sequence of 

tokens in a document.  BWI and similar methods do not contain any information about 

the parent nodes, siblings, or child position in the grammar or XML/HTML tree in which 

they implicitly belong.  In addition, the boundary detector format does not allow BWI to 

take advantage of part-of-speech information, and other similar features that have been 

shown to contain important sources of regularity.   

While context information is often the most relevant for extracting fields, global 

information about the relative position of the field within the context of the entire 
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document can also be important.  For example, despite BWI’s impressive performance on 

the abstract text data set, the most obvious clue to finding an abstract in a MEDLINE 

citation is, “look for a big block of text in the middle of the citation.”  There is no way to 

capture this global location knowledge using BWI’s existing representation.  Additional 

knowledge that BWI is unable to learn or use includes, “the field is in the second 

sentence of the second paragraph if it’s anywhere,” “the field is never more than one 

sentence long,” “the field doesn’t have any line breaks inside it,” and so on. 

7.2 Scoring 

Every match that BWI returns when being tested has an associated confidence score, 

which is the product of the confidences of the fore and aft boundary detectors along with 

the probability of the resulting field length.  The scoring of the boundary detectors is 

important in identifying the most useful rules and also trying to assess how well the rules 

will perform.  This score may be used for pruning less productive rules and/or 

thresholding to get a precision/recall tradeoff.   

While the scores are a good measure of the likelihood with which a proposed 

match is in fact correct, these scores are not as meaningful or useful as actual match 

probabilities would be.  First of all, the confidence scores are unbounded positive real 

numbers, and thus it is difficult to assess the relative confidence of matches in different 

document collections which have a large dynamic range.  This also makes it hard to set 

absolute confidence thresholds for accepting matches. 

Second, it’s hard to compare the confidence of full matches and partial matches, 

because the components of the confidence score have dramatically different ranges.  This 

obscures the “decision boundary” of the learned system, which would otherwise be an 

important target for improving performance.  Finally, without probabilities, it is difficult 

to use the match scores in a larger framework, for example Bayesian evidence 

combination or decision-theoretic action planning.  The basic problem is that while the 

scores are useful for stating the relative confidence of two matches in the same document 

collection, they are not useful for comparing matches across collections, nor are they 

useful for providing an absolute measure of confidence.  Unfortunately there is much 

demand for the later two cases.  
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Another problem with using unbounded positive numbers to score boundary 

detectors is that no distinction can be made between a fragment of text that has appeared 

numerous times in the training set as a negative example, a field that has never been seen 

labeled one way or the other, and a field where one boundary detector has confidently 

fired.  In other words, there is no way to tell a “confident rejection” from a “near miss.” 

This “negative space” is as important as the positive space for communicating confidence 

in extracting fragments of text, but it has been completely collapsed into a single point 

(confidence = 0). 

BWI also implicitly assumes that there is only one type of field being extracted 

from a given data set.  Most documents contain multiple pieces of related information to 

be extracted, and the position of one field is often indicative of the position of another.  

However, BWI can only extract fields one at a time, and entirely ignores the relative 

position of different fields.  For example, in the speaker announcements, even though 

there are four fields being extracted, they are all trained and tested on independently, and 

the presence of one field is in no way considered as usefully predictive of the location of 

another.  This also makes it difficult to extend methods like BWI to extract relationships 

in text, which is often as important as extracting individual fields (Muslea, 1999).  

Furthermore, it is inconvenient for real-world settings, where ideally one should be able 

to label and train on a single document at a time, with multiple fields labeled in each 

document, rather than going through every document in the set multiple times. 

7.3 Efficiency 

In addition to the clear need to develop high performance IE systems, speed and 

efficiency of training and testing is also a critical component for making these systems 

practical for solving real-world problems. 

7.3.1 BWI is slow to train and test 

Even on modern workstations, training BWI on a single field with even a few hundred 

documents can take several hours, and testing can take several minutes.  The slowness of 

training and testing also make using larger document collections or larger lookeahead for 

detectors prohibitive, even though both might be necessary to achieve high levels of 

performance on complex tasks.  This also inhibits reliable comparison of different IE 

methods, and makes BWI unsuitable for the engine of an interactive system, such as with 
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iterative human labeling during active learning.  There are a number of factors that make 

BWI slower than may be necessary. 

The innermost loop of training BWI is finding extensions to boundary detectors.  

This is done in a brute-force manner, up to a specified lookahead parameter, L, and 

repeated until no better rule can be found.  Finding a boundary detector extension is thus 

exponential in L, because every combination of tokens and wildcards is enumerated and 

scored, which makes even modest lookahead values prohibitively expensive.  As a result, 

a value of L=3 is normally used to achieve a balance between efficiency and 

performance.  Freitag et. al. note that while this was usually sufficient, there were times 

when a value up to L=8 was required to achieve the best results.  Training with such a 

high lookahead is usually prohibitively slow, however, and thus the “local context” 

learned tends to be very local indeed. 

Although testing is considerably faster then training, it too is inefficient and slow.  

One technique for improving testing speed is to compress the set of boundary detectors 

learned during training, before applying them to a set of test documents.  For example, 

one could eliminate redundancy by combining duplicate detectors, or eliminating 

detectors that are logically subsumed by a set of other detectors (since whenever one 

would match, so would the other).  This is a practice used by (Cohen, 1999) in SLIPPER, 

as well as by (Ciravegna, 2001) in (LP)2 for partially structured tasks, but it’s doubtful 

how useful it would be in less regular document collections, which unfortunately are the 

ones in which a large number of detectors have to be learned.  There are also more 

sophisticated ways to compress a set of rules, many of which are somewhat lossy 

(Margineantu, 1997; Yarowsky, 1994).  However a tradeoff between speed and accuracy 

should always be evaluated. 

7.3.2 BWI can’t learn incrementally 

Once BWI has been trained on a given set of labeled documents, if a few more 

documents are labeled and added, there is currently no way to avoid training on the entire 

set from scratch again.  In other words, there is no way to learn some extra marginal 

information from a few additional documents, even though the vast majority of what will 

be learned in the second run will be identical to what was learned before.  This is more a 

problem with boosting than with BWI specifically, because the reweighting that occurs at 
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each round depends on the current system’s performance on all the documents, so even 

adding a few extra documents might mean that the training takes a very different 

direction.  Nevertheless, it is clearly desirable to be able to add documents to a data set as 

they become labeled, and not to have to completely retrain each time. 

7.3.3 BWI doesn’t know when to stop boosting 

While BWI’s ability to boost for a fixed number of rounds instead of terminating once all 

positive examples have been covered is clearly one of its advantages, it’s difficult to 

know how many rounds to prescribe.  Depending on the difficulty of the task, a given 

number may be insufficient to learn all the exceptions, or it may be overkill and lead to 

overfitting or massive redundancy.  Ideally, BWI would be able to continue boosting for 

as long as useful, and then shut itself off when it deems that continuing to boost would do 

more harm than good.  This could also serve as an alternative to having to go back and 

prune the trained rule list, because the rules learned in the final iterations are likely to be 

the least reliable and useful.   

Cohen and Singer address the problem of when to stop boosting directly in their 

design of SLIPPER by using internal five-fold validation on a held out part of the training 

set (Cohen, 1999).  For each fold, they first boost up to a specified maximum number of 

rounds, testing on the held out data after each round, and then they select the number of 

rounds that lead to the lowest average error on the held out set, finally training for that 

number of rounds on the full training set.  This is certainly a reasonable thing to do, and it 

has the advantage of being sensitive to the difficulty of the task, but it also has several 

drawbacks.  First of all, it makes the already slow training process six times slower, when 

presumably at least part of the motivation behind finding an optimal number of rounds is 

to avoid spending more time than necessary during training.  Second, they replaced the 

free parameter of the actual number of boosting rounds with another free parameter for 

the maximum number of rounds to try during cross-validation.  Setting the value too low 

will mean that the best number of rounds is never found, while setting the number of 

rounds too high will mean much wasted effort. 

Perhaps it would be possible to use BWI’s own detector confidences to tell when 

continuing to boost is futile or harmful.  Since detector scores tend to decrease as the 

number of boosting rounds increases, it might be possible to set an absolute or relative 
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confidence threshold below which to stop boosting, or to determine when the curve has 

flattened out and is only picking up exceptional cases one at a time.  For example, 

(Ciravegna, 2001) prunes rules that cover less than a specified number of examples, 

because they are unreliable, and generally more likely to cause spurious matches than 

actual ones. 

8 Extending rule-based IE methods 

In this section, we present several suggestions for advancing the research agenda of rule-

based IE methods as a whole.  We concentrate on identifying new sources of information 

to consider, constructing new representations for handling them, and producing more 

meaningful output from the system.  In some cases, we present preliminary results that 

appear to corroborate our hypotheses.  In other cases, we cite existing work by other 

researchers that we believe represent steps in the right direction.  Our hope is that this 

will provide a clearer organizational structure for existing research, as well as an 

inspiration for novel projects. 

8.1 Exploiting grammatical structure of sentences 

Section 7.1.2 discusses the importance of using grammatical structure in natural language 

or hierarchical structure in HTML and XML documents.  Ray and Craven have taken an 

important first step in this direction (Ray, et. al., 2001) by preprocessing natural text with 

a shallow parser, and then flattening the parser output by delimiting sentences into typed 

phrase segments.  The text is then marked up with this grammatical information, and is 

used as part of the information extraction process (they use Hidden Markov Models, but 

this technique is generally applicable).  For example, using XML tags to represent these 

phrase segments, they construct sentences from MEDLINE articles such as: 

 

<NP_SEG>Uba2p</NP_SEG> <VP_SEG>is located largely</VP_SEG> 

<PP_SEG>in</PP_SEG> <NP_SEG>the nucleus </NP_SEG>. 

 

While the parses produced aren’t perfect, and the flattening often further distorts 

things, this procedure is fairly consistent in blocking out noun, verb, and prepositional 

phrases.  An information extraction system can then learn boundary detectors that include 
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these tags, allowing it, for example, to represent the constraint that proteins tend to be 

found in noun phrases, and not in verb phrases.  Ray and Craven report that their results 

“suggest that there is value in representing grammatical structure in the HMM 

architectures, but the Phrase Model [with typed phrase segments] is not definitively more 

accurate.”   

In addition to the results presented in the experimental section, which include Ray 

and Craven’s data sets without any grammatical information, we also experimented on 

their data using this segmental information in order to see if there were valuable 

regularities expressed in this extra content that could be exploited by rule-based IE 

methods.  We used BWI to extract all the individual fields in the two relations that Ray 

and Craven study (proteins and their localizations, genes and their associated diseases).  

We ran identical tests with and without the XML tags as shown above.  We found that 

including the tags uniformly and considerably improved both precision and recall for all 

four extraction tasks (Figure 4).  In fact, all four tasks saw double-digit percentage 

increases in precision, recall, and F1, with an average increase of 21%, 65%, and 46% 

respectively.   

Using typed phrase segment tags uniformly impoves BWI's 
performance on the 4 natural text MEDLINE extraction tasks
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Figure 4: Performance of BWI averaged across the four natural text extraction tasks, with and without 

the use of typed phrase segments.  Shown with standard error bars. 
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The fact that precision improves when using the phrase segment tags means that 

BWI is able to use this information to reject possible fields that it would otherwise return.  

The fact that recall also improves suggests that having segment tags helps BWI to find 

fields that would otherwise miss.  The combination of these results is somewhat 

surprising.  For example, while not being a noun phrase may be highly correlated with 

not being a protein, the inverse is not necessarily the case (i.e. there are plenty of non-

protein noun phrases in MEDLINE articles).  Thus we hypothesized that including typed 

phrase segment information was actually regularizing the extraction task, enabling rules 

to gain greater positive coverage without increasing their negative coverage. 

Using the SWI-Ratio we proposed earlier in the paper, we were able to quantify 

and address this hypothesis.  We ran SWI on all four extraction tasks with and without 

tags, and compared their resulting SWI-Ratios (Figure 5).  As expected, when we 

included the tags, we saw double-digit percentage decreases in the SWI-Ratio of all four 

tasks, with an average reduction of 21%.  Recall that a lower SWI-Ratio represents a 

more regular domain, because it means that the same number of positive examples can be 

perfectly covered with fewer rules.  We conclude that including this type of grammatical 

information, even with existing rule-based IE methods, represents a considerable 

advantage for both accuracy and coverage, and is worth investigating in more detail. 

The success of including this limited grammatical information immediately raises 

the question of what additional grammatical information could be used, and how helpful 

it might be.  It’s not hard to imagine that exploiting regularities in field context such as 

argument position in a verb phrase, subject/object distinction, and so on would be 

valuable.  For example, Charniak has shown that probabilistically parsing sentences is 

greatly aided by conditioning on information about the linguistic head of the current 

phrase, even if it’s several tokens away in the flat representation (Charniak, 2001).  This 

suggests that such information is an important source of regularity, which is exactly what 

rule-based IE methods are designed to exploit.   

Unfortunately, the existing formulation of boundary detectors is not well 

equipped to represent or handle such information.  While merely inserting XML tags to 

represent typed phrase segments proved useful, such an approach is unprincipled, as it 

combines meta- level information with the text itself.  Ideally, the representation of 
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boundary detectors should be extended to capture and exploit regularities in implicit 

higher- level information as well as explicit token information in a document.  In the case 

of using typed phrase segments, we were able to increase performance while maintaining 

the simple, flat representation currently used.  However, this approach can only be taken 

so far.   

8.2 Handling XML / HTML structure and information 

Just as the grammatical structure of a sentence presents opportunities for exploiting 

structural regularities, the hierarchical structure and attribute information defined by an 

XML or HTML document also contain important clues for locating target fields.  

However, this information is essentially lost when an XML document is parsed as a 

linear sequence of tokens instead of into a Document Object Model (DOM).  For 

example, tags like <tag> or </tag> that should be treated as single tokens are instead 

broken into pieces.  More problematic, however, is the fact that many tags contain 

namespace references, and attribute-value pairs inside the starting tag, such as <name:tag 

att1="val1" att2="val2">.  When using flat tokenization, lookahead becomes a 

Using typed phrase segment tags uniformly increases the 
regularity of the 4 natural text MEDLINE extraction tasks
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Figure 5: Average SWI-Ratio for the four natural extraction tasks, with and without the use of typed 

phrase segments.  Shown with standard error bars. 
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serious problem, and there is no way to intelligently generalize over such tags (e.g. match 

a tag with the same name, require specific attributes/values, etc.).   

(Muslea, et. al., 1999) have made some important contributions to solving this 

problem with STALKER, which constructs an “embedded catalog” for web pages (a 

conceptual hierarchy of content in a document) that allows them to take some advantage 

of global landmarks for finding and extracting text.  They accomplish this by use of the 

“Skip-To” operator, which matches a boundary by ignoring all text until a given sequence 

of tokens and/or wildcards.  While the token sequences learned with Skip-To operators 

arte similar to the boundary detectors used in BWI, they can be combined sequentially to 

form an extraction rule that relies on several distinct text fragments, which can be 

separated by arbitrary amounts of intermediate text. 

Rules in STALKER are learned by starting with the most simple Skip-To rule that 

matches a given positive example and greedily adding tokens and new Skip-To operators 

as necessary to eliminate covering any negative examples.  This approach avoids the 

exponential problem of the exhaustive enumeration of boundary detectors used by BWI.  

The tradeoff, however, is that the resulting boundary detectors only work for pages with a 

highly regular and consistent structure, and the token sequences learned tend to be shorter 

and more specific.  Furthermore, using Skip-To only approximates the information 

available in a true DOM representation.  

Another approach to exploiting the structural information embedded in web pages 

and XML documents can be found in (Yih, 1997), which uses hierarchical document 

templates for IE in web pages, and finds fields by learning their position within the 

template’s node tree.  The results presented are impressive, suggesting that this is useful 

information to have, but currently the document templates must be constructed manually 

from web pages of interest, because the hierarchies in the templates are more subjective 

than just the HTML parse.  This may be less of a problem with XML documents, but 

only if the tag-based structure corresponds in some relevant way to the content structure 

that is necessary to exploit for information extraction.  Similar results are presented by 

Liu, et. al. in  “XWRAP”, a rule-based learner for web page information extraction that 

uses heuristics like font size, block positioning of HTML elements, and so on to construct 

a document hierarchy and extract specific nodes (Liu, 2000).   
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8.3 Extending the expressiveness of boundary detectors  

One quick solution to the problem of incorporating more grammatical and structural 

information into the existing rule-based IE framework is the development of a more 

sophisticated set of wildcards.  Currently, wildcards only cover word- level syntactic 

classes, such as “all caps”, “begins with a lower-case letter”, “contains only digits”, and 

so on.  While these are useful generalizations over matching individual tokens, they’re 

also extremely broad.  A potentially middle ground might be developing wildcards that 

match words of a given linguistic part of speech (e.g. “noun”), a given semantic class 

(e.g. “location/place”), or a given lexical feature (e.g. specific prefix/suffix, word 

frequency threshold, etc.).   

In principle, such wildcards could be built and used with the existing BWI 

framework, and would be able to capture regularities that are currently being learned one 

instance at a time.  However, with many of these new types of wildcards, constructing 

either a predefined set of allowable words or a simple online test for inclusion would not 

be feasible, and instead we would have to rely either on preprocessing using existing 

NLP systems (as Ray and Craven did), or on grammatical/lexical classifiers that could be 

used as-needed.  Clearly efficiency would become an important issue, particularly during 

training when such generalizations would have to be repeatedly posed and checked. 

Encouraging results in this direction are already available.  For example, 

Ciravegna’s (LP)2 system uses word morphology and POS information to generalize the 

specific rules it initially learns (Ciravegna, 2001), a process essentially equivalent to 

using lexical and POS wildcards respectively.  Ciravegna’s results are comparable to 

other state of the art methods, including BWI.  While (LP)2 also uses rule correction and 

rule pruning, Ciravegna attributes “the use of NLP for generalization” as being the most 

responsible for the performance of the system.  Another clever use of such 

generalizations can be found in RAPIER (Califf, et. al., 1999), which uses WordNet 

(Miller, 1995) to find hypernyms (a semantic class of words to which the target word 

belongs), and uses them in its learned extraction rules.  (Yarowsky, 1994) also reports 

that including semantic word classes like “weekday” and “month” to cover sets of tokens 

improves performance for lexical disambiguation, suggesting that there are indeed 

regularities to be exploited at this level of generality. 
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HTML/XML wildcards that would allow for generalizations such as any “font-

formatting tag” or any “table cell with a specified background color” could also be 

employed.  These generalizations would not only help increase recall without sacrificing 

precision, they might help solve a common problem in wrapper induction, where small 

changes to a web page “break” the current learned detectors, and the system has to be 

retrained.  For example, if a web page changes the font color of a key piece of 

information, but the boundary detector has learned a more general rule that identifies any 

text with a non-standard font color, it may well continue to fire correctly, whereas a more 

specific rule would no longer match at all. 

8.4 Turning BWI match scores into probabilities 

While improving the performance of IE methods is obviously an important goal, any 

progress made will be limited in its usefulness by the output of the system, and thus this 

is another critical target for further research.  As mentioned in the previous section (7.2), 

BWI and similar methods do not yet attach probabilities to the matches they return.  

Probability is the lingua franca for combining information processing systems, because 

probabilities have both absolute and relative meaning, and because there are powerful 

mathematical frameworks for dealing with them, such as Bayesian evidence combination 

and decision theory. 

Thus, it is worth asking the question, can BWI’s confidence scores be transformed 

into probabilities?  This question really comes in two pieces.  First, are BWI’s confidence 

scores meaningful and consistent? That is, does BWI produce incorrect matches with 

high confidence, or does its accuracy increase with its confidence?  Second, can BWI 

learn to correlate its own confidences with the results returned, and thus automatically 

calibrate its scores into probabilities?  

The first question (are BWI’s scores consistent) can be answered empirically, by 

training and testing BWI on different document collections.  Ideally, the majority of 

BWI’s incorrect predictions would have low confidence compared to its correct 

predictions.  Such a distribution would be desirable for two reasons.  First, it would 

mimic a true probability distribution, where a higher score is correlated with a higher 

chance of being correct.  Second, it would allow users to set a confidence threshold above 

which to accept the computer’s guesses, and below which to flag for human follow up. 
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Our results suggest that BWI’s scores are fairly consistent and amenable to a 

threshold setting for regular tasks, but that on hard tasks it is difficult to separate BWI’s 

correct and incorrect predictions based only on its ma tch confidences.  For the 

AbstractText task, confidence scores ranged from 0 to 100, but all of BWI’s incorrect 

guesses had confidence scores below 20 (Figure 6).  This means that if BWI merely 

ignored any of its results below a confidence threshold of 20, it would obtain perfect 

precision.  However, setting a confidence threshold of 20 would result in 59% recall, 

compared with 95% recall with a threshold at 0, because correct answers would also be 

pruned.  In this case, a lower confidence threshold will increase F1, because most of the 

incorrect answers can be pruned without eliminating correct guesses, as can be seen in 

the F1 curve in Figure 6, which peaks at a confidence threshold of 10.  This means the 

confidence scores are behaving roughly as probabilities should, because as the confidence 

increases, so does the fraction of correct guesses.  Note that the precision for this task is 

lower than reported in Table 1 because we considered all of BWI’s matches, whereas 

normally BWI eliminates overlapping matches, keeping the candidate with higher 

confidence. 

Unfortunately, this desirable behavior does not appear to hold up for more 

difficult tasks.  On the protein task, considered the most difficult both by performance 
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Figure 6: Precision, recall, and F1 of BWI on AbstractText task vs. confidence threshold below which 

to ignore matches.  Shown with empirical probability of matches within each confidence interval. 
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and by SWI-Ratio, there is no clean way to separate the correct and incorrect guesses 

(Figure 7).  The highest confidence negative match gets confidence 0.65, however above 

this threshold, BWI would only achieve 0.8% recall, because the vast majority of its 

correct guesses are below a confidence threshold of 0.35.  The highest F1 in this case 

comes from a confidence threshold of 0, with a precision of 52% and a recall of 24% 

(these numbers are taken from an individual train/test fold and thus differ slightly from 

the averages presented in Table 1).  In other words, there is no way to improve 

performance by setting a confidence threshold, because there is not a smooth transition to 

a higher density of correct guesses as match confidence increases. 

These analysis techniques immediately suggest a direct way of calibrating scores 

into probabilities—bin BWI’s guesses by confidence threshold, and set the probability as 

the fraction of correct guesses in the bin.  This essentially says that if for a given 

confidence threshold, say 75% of the guesses turn out to be correct, then a new match 

with the same confidence also has a 75% of being correct.  This also has the desirable 

property that the more consistent the confidence scores, the more these calibrated 

probabilities become true probabilities.  However, even for difficult tasks in which 

consistency is impossible, and thus there will not be a smooth increase in probability as 
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Figure 7: Precision, recall, and F1 of BWI on YPD-protein task  vs. confidence threshold below which 

to ignore matches.  Shown with empirical probability of matches within each confidence interval. 
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confidence increases, these calibrated probabilities are still meaningful, because they will 

capture the remaining uncertainty in any guesses made. 

9 Concluding remarks 

Current information extraction methods are able to find and exploit regularities in text 

that come from local word ordering, punctuation usage, and distinctive word- level 

features like capitalization.  This information is often sufficient for partially and highly 

structured documents because the regularity is at the surface level—in the use and 

ordering of the words themselves.  However, these methods perform considerably worse 

when dealing with natural text, because such regularities are less apparent.  Nevertheless, 

there are still important regularities in natural text documents, at the grammatical and 

semantic levels.  We have shown that by revealing even limited grammatical information 

via XML results in considerably higher precision and recall for these types of tasks. 

Despite the differences in behavior of these algorithms on document collections 

of varying regularity, there has been limited analysis of the specific relationship between 

regularity and performance.  We proposed the SWI-Ratio as a quantitative measure of 

document regularity, and we have used it to illustrate this relationship in greater detail 

than has previously been possible.  Since the SWI-Ratio objectively measures the relative 

regularity of a document collection (as the number of iterations SWI requires to perfectly 

cover all and only positive examples divided by the total number of positive examples), it 

is suitable for comparison across data sets of varying sizes and content. 

While all the algorithms we studied perform worse on less regular document 

collections, they still exhibit consistent differences.  Many current rule-based IE methods 

(including SWI, proposed in this paper) employ some form of set covering to combine 

multiple extraction rules.  These methods are relatively simple to implement, however, 

they are all fundamentally limited in that they remove positive examples once covered, 

and cannot learn more rules than it takes to cover the entire training set.  Boosting 

overcomes this problem by reweighting covered examples instead of removing them.  We 

have shown that BWI exploits this property to learn additional useful rules even after all 

examples have been covered, and consistently outperforms SWI and related methods.  

Reweighting also helps by focusing BWI on learning specific rules for the exceptional 
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cases missed by the general rules, resulting in higher precision.  The combination of 

being able to learn accurate rules, and keep training to broaden coverage is the source of 

BWI’s success. 

While we have focused on rule-based IE methods as a class, and on BWI in 

particular, many of the observations made in this paper hold for information extraction as 

a whole.  For example, while Hidden Markov Models employ an ostensibly different 

representation, they too tend to learn local flat regularities in adjacent word location, and 

distinctive use of punctuation, capitalization, and other surface regularities also exploited 

by BWI.  Thus the discussion of what sources of information are currently being ignored 

are relevant to both classes of methods.  We believe that there are many opportunities for 

improving both the performance and usefulness of current information extraction 

methods.  We have outlined several suggestions for addressing the limitations of current 

methods discussed in this paper, all of which would benefit from further investigation. 
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  cc addr date abstract speaker loc. stime etime id comp. title protein location gene disease 

BWI 50 50 50 500 500 500 500 500 500 500 500 500 500 500 500 
SWI 5.1 1.3 1.0 51.8 139.4 75.6 72.1 25.0 15.2 46.9 132.1 333.1 235.0 357.0 280.1 

Root-SWI 3.6 1.3 1.0 48.4 110.7 66.8 62.0 17.9 1.0 46.3 119.6 322.5 229.7 344.6 278.8 
 

Table 2: Number of boosting iterations used BWI, SWI, and Root -SWI on the 15 data sets. 

BWI Fixed-BWI Root-SWI Greedy-SWI 
Data Set SWI-Ratio 

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 

Latime-cc 0.013 0.996 1.000 0.998 1.000 0.985 0.993 1.000 0.975 0.986 1.000 0.948 0.973 

Zagats-addr 0.011 1.000 0.937 0.967 1.000 0.549 0.703 1.000 0.549 0.703 1.000 0.575 0.724 

QS-date 0.056 1.000 1.000 1.000 1.000 0.744 0.847 1.000 0.744 0.847 1.000 0.783 0.875 

AbstractText 0.149 0.993 0.954 0.973 0.966 0.495 0.654 0.846 0.585 0.685 0.847 0.317 0.447 

SA-speaker 0.246 0.791 0.592 0.677 0.887 0.446 0.586 0.777 0.457 0.565 0.904 0.342 0.494 
SA-location 0.157 0.854 0.696 0.767 0.927 0.733 0.818 0.800 0.766 0.780 0.924 0.647 0.759 
SA-stime 0.098 0.996 0.996 0.996 0.991 0.949 0.969 0.975 0.952 0.964 0.979 0.842 0.902 

SA-etime 0.077 0.944 0.949 0.939 0.993 0.818 0.892 0.912 0.793 0.843 0.987 0.813 0.885 

Jobs-id 0.068 1.000 1.000 1.000 1.000 0.956 0.978 1.000 0.956 0.978 0.996 0.829 0.902 
Jobs-company 0.246 0.884 0.701 0.782 0.955 0.733 0.824 0.794 0.838 0.784 0.904 0.751 0.802 

Jobs-title 0.381 0.596 0.432 0.501 0.661 0.479 0.547 0.480 0.658 0.546 0.660 0.477 0.549 

YPD-protein 0.651 0.567 0.239 0.335 0.590 0.219 0.319 0.516 0.154 0.228 0.594 0.134 0.218 
YPD-location 0.478 0.738 0.446 0.555 0.775 0.418 0.542 0.633 0.246 0.347 0.774 0.240 0.365 

OMIM-gene 0.534 0.655 0.368 0.470 0.826 0.480 0.606 0.469 0.249 0.324 0.646 0.199 0.304 
OMIM-disease 0.493 0.707 0.428 0.532 0.741 0.411 0.528 0.487 0.251 0.327 0.785 0.241 0.369 

 
Table 1: SWI-Ratio and performance of the four IE methods examined on the 15 extraction tasks. 


