
 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

Sources of Success for

Information Extraction Methods

 David Kauchak Joseph Smarr Charles Elkan
 Dept. of Computer Science Symbolic Systems Program Dept. of Computer Science
 UC San Diego Stanford University UC San Diego
 La Jolla, CA 92093-0114 Stanford, CA 94305 La Jolla, CA 92093-0114
 dkauchak@cs.ucsd.edu jsmarr@stanford.edu elkan@cs.ucsd.edu

Abstract

In this paper, we examine Boosted Wrapper Induction (BWI) as an exemplar of

recent rule-based information extraction techniques by conducting experiments on a

wider variety of tasks than has previously been studied, including several natural text

document collections. We provide a systematic analysis of how each of BWI’s

algorithmic components, particularly boosting, contributes to its performance over

comparable methods. We show that the benefit of boosting comes from the ability to

reweight examples to learn specific rules (resulting in high precision) combined with

the ability to continue learning rules after all positive examples have been covered

(resulting in high recall). We also propose the SWI-Ratio as a quantitative measure

of the regularity of an extraction task, and show that this ratio is a strong indicator of

IE performance. Based on these results, we present an overview of the current

successes and limitations of rule-based IE systems as a whole. Specifically, we

address limitations in the sources of information made available to IE methods, the

current representations used by these system, and the relationship between

confidence values returned during extraction and true probabilities. In this analysis,

we investigate including grammatical and semantic information for natural text

documents, as well as parse tree and attribute-value pair information for XML and

HTML documents. We show experimentally that incorporating even limited

grammatical information can improve both the regularity and performance of natural

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 2

text extraction tasks. We conclude with novel suggestions for enriching the

representational power of rule-based IE methods to exploit these and other types of

regularities.

1 Introduction

Freely available text is abundant. Thousands of new web pages appear everyday. News,

magazine, and journal articles are constantly being created. E-mail has become one of

the most popular ways of communicating. All these trends result in an enormous amount

of available text in digital form. This repository of text is an untapped resource of

information. However, identifying specific desired information is not always an easy

task. Information extraction (IE) is the task of extracting relevant fragments of text from

larger documents to be processed later in some automated way such as responding to a

user query. Examples of IE tasks include identifying the speaker featured in a talk

announcement, finding proteins referenced in a biomedical journal article, and extracting

the list of credit cards accepted by a restaurant from an online review.

A variety of systems and techniques have been developed to address the

information extraction problem. Many successful techniques have included statistical

models such as n-gram models, Hidden Markov Models and probabilistic context free

grammars (Califf, 1998). Recently, though, rule-based systems that employ some form

of machine learning have become increasingly popular and successful. These systems

have taken a variety of different approaches, but have all recognized a number of

common key facts. First, creating rules by hand is extremely difficult and time

consuming (Riloff, 1996). For this reason, most of the systems generate the rules given

raw unlabeled data or partially labeled data. Second, people have recognized that trying

to generate a single, general rule for extracting a given field is often impossible (Muslea,

et. al., 1999). Instead, most of the systems attempt to learn a number of rules that cover

the training set and then combine these rules in some way.

One recent technique for generating rules in the realm of text extraction is

wrapper induction. Wrapper induction techniques have proved to be fairly successful for

IE tasks in highly structured domains, such as web pages generated from a template script

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 3

(Muslea, et, al., 1999; Kushmerick, 2000). However, because of their specificity, these

methods do not generalize well to more natural texts, thus limiting their applicability.

Recent research in improving weak classification rules using boosting (Shapire,

1999) has led to a method for increasing the coverage of a weak learner by repeatedly

learning rules that focus on portions of the decision space that previous rules have found

difficult. Boosting works by continually reweighting the training examples, and using the

weak learner to learn a new rule each time, stopping after a fixed number of iterations.

This collection of rules is then combined by a weighted vote (related to their individual

performance). Boosting has been shown theoretically to perform well and performs well

in practice.

Boosted Wrapper Induction (BWI) is an IE technique that uses AdaBoost to

generate a more general extraction procedure from a set of specific wrappers (Freitag, et.

al., 2000). BWI has been shown to do well on a wide variety of tasks with partially

structured and highly structured documents, but specifically how boosting contributes to

this performance increase has not been investigated. Furthermore, BWI has been

proposed as a potential solution for natural text, but little has been done to examine its

performance in this challenging domain.

In this paper, we investigate the benefit of boosting in BWI and also its

performance on natural text. We do this by comparing BWI’s use of boosting with

wrapper induction against another simple and common approach to combining weak

learners, sequential covering. With sequential covering, the rules are ordered in some

way according to “quality.” The best rule is chosen, and all of the examples that the rule

correctly classifies are removed from the training set. The process is then repeated until

the entire training set has been covered. For a more detailed description of sequential

covering see (Cardie, 2001). Sequential covering has been used in a number of systems

(Califf, 1998; Clark, et. al., 1989; Michalski, 1980; Muslea, et. al., 1999; Quinlan, 1990)

because it is fairly simple to implement, tends to generate understandable and intuitive

rules and has achieved good results.

This paper is broken down into a number of sections. In section 2, we briefly

describe BWI and related techniques, providing a formalization of the problem, along

with a review of relevant terminology. In section 3, we present experimental results

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 4

comparing these different rule-based IE methods on a wide variety of document

collections. In section 4, we analyze the results of these experiments in more detail, with

specific emphasis on how boosting affects BWI’s performance, and how performance

relates to the regularity of the extraction task. In section 5, we present the SWI-Ratio as

an objective measure of task regularity, and further examine the connection between

regularity and performance. In section 6, we transition to a general discussion of what

this class of rule-based IE methods is able to learn from document collections. In section

7, we point out a number of limitations of current methods, focusing on what information

is considered and how it is represented, how results are scored and presented, and the

efficiency of training and testing. Finally, in section 8, we suggest improvements to

address these limitations, and we provide experimental results that show that including

grammatical information in the extraction process can increase regularity and

performance.

2 Overview of algorithms and terminology

In this section, we present a brief review of the BWI approach to information extraction,

including the formal problem statement, the algorithms used, and important terminology.

We also present a simplified variant of the BWI algorithm, called SWI, which will be

used to analyze BWI and related algorithms.

2.1 IE as a classification task

Most of the material in this section can be found in (Freitag, et. al, 2000). We present an

abridged version here for convenience, starting with a review of relevant vocabulary.

Each document can be broken up into a sequence of tokens. A token is one of three

things: an unbroken string of alphanumeric characters, a punctuation character, or a

carriage return. The problem of information extraction is to extract some number of

tokens from a test document. To do this, we reformulate the IE problem as a

classification problem. Instead of thinking of the problem as a string of tokens, we look

at the problem as a function over boundaries. A boundary is the space between two

tokens. Notice that a boundary is not something that is actually in the text (such as white

space), but just comes about from the parsing of the text into tokens. We want to

approximate two functions from a boundary to the binary set {0,1}: one function that is 1

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 5

iff the boundary is the beginning of a field to be extracted, and one function that is 1 iff

the boundary is the end of a field. This transformation from a segmentation problem to a

boundary classification problem is common and is also used by (Shinnou, 2001) to find

word boundaries in Japanese text (since written Japanese does not use spaces).

These approximation functions are represented as sets of boundary detectors (or

just detectors). A detector is a pair of token sequences, 〈p, s〉. A detector matches a

boundary iff the prefix string of tokens, p, matches the tokens before the boundary and

the suffix string of tokens, s, matches the tokens after the boundary. For example, the

detector 〈Who:, Dr.〉 would match “Who: Dr. John Smith” between the ‘:’ and the ‘Dr’.

Once the beginning and ending functions are approximated, extraction is performed by

identifying the beginning and end of a field and extracting the text between the two

points.

BWI separately learns two sets of boundary detectors for recognizing the

beginnings and endings of a target field to extract. At each iteration, BWI learns a new

detector, and then uses AdaBoost to reweight all the examples in order to focus on

portions of the training set that the current rules are unable to match. Once this process

has been repeated for a fixed number of iterations, BWI returns the two sets of learned

detectors (fore detectors, F, and aft detectors, A), as well as a histogram over the lengths

(number of tokens) of the target field, H.

2.2 Sequential Covering Wrapper Induction (SWI)

SWI uses the same basic framework as BWI with some slight modifications to the

selection of rules. The basic algorithm for SWI can be seen in Figure 1. SWI generates F

and A independently by calling the GenerateDetectors procedure. The

GenerateDetectors procedure is a basic sequential covering rule learner. At each

iteration through the while loop, a new boundary detector is learned, consisting of a

prefix part and a suffix part. Like BWI, the best detector is generated by starting with

empty prefix and suffix sequences. Then, the best token is found to add to either the

prefix or suffix by exhaustively searching all possible extensions of length L. This is

repeated, adding one token at a time, until the detector being generated no longer

improves (as determined by the scoring function).

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 6

Once the best boundary detector has been found, it is added to the set of detectors

to be returned (either F or A). Before continuing, all the positive examples that were

covered by the new rule are removed, leaving only uncovered examples. When this set

of rules covers all the positive training examples, the loop ends, and the set of detectors

that now cover all the positive training examples is returned.

A few things should be clarified at this point. There is a distinction between the

actual text, which is simply a set of tokens, and the two training functions, which indicate

whether a boundary is the start of end of a field to be extracted. When the algorithm

removes the positive examples that are covered by a rule, the values in training function

are set so that they are no longer positive or negative, but the actual sequence of tokens is

not changed, as this would alter the data inappropriately.

There are a couple of key differences between BWI and SWI. First, as mentioned

above, with sequential covering the training examples are altered by changing the set of

positive examples. In BWI, the examples are reweighted but are never removed.

Second, the scoring functions for the extensions and detector are slightly different. We

propose two different versions of SWI. The basic SWI algorithm uses a simple greedy

model. An extension or detector is scored simply by the number of positive examples

that it covers without covering any negative examples. So, if a detector misclassifies

even one example (i.e. covers a negative example), it is given a score of zero. We call

this version Greedy-SWI. A second version of SWI, called Root-SWI, is also

implemented and uses the same scoring function as BWI. Given the sum of the weights

SWI: training sets S and E -> two lists of detectors and length histogram
 F = GenerateDetectors(S)
 A = GenerateDetectors(E)
 H = field length histogram from S and E
 return ‹F,A,H›

GenerateDetectors: training set Y(S or E) -> list of detectors
 prefix pattern p = []
 suffix pattern s = []
 list of detectors d

 while(positive examples are still uncovered)
 〈〈 p, s〉〉 ßß FindBestDetector()
 add 〈〈 p, s〉〉 to d
 remove positive examples covered by 〈〈 p, s〉〉 from Y
 p, s = []

 return d

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 7

of the positive examples covered by the extension or detector, W+, and the sum of the

weights for the negative examples covered, W-, the score is calculated to minimize

training error (Cohen, et. al., 1999):

−+ −= WWscore

Notice that for Root-SWI these sums will just reflect the number of examples covered

because the examples are all given the same weight. The final difference between BWI

and SWI is that BWI terminates after a predetermined number of boosting iterations. In

contrast, SWI terminates as soon as all of the positive examples have been covered. This

turns out to be a key difference between the two different methods.

3 Experiments

In this section, we describe the data sets used for our set of experiments, our setup and

methods, and the objective results of our tests. We provide an analysis of the results in

the next section.

3.1 Data sets and IE tasks

In order to determine the differences between BWI, Greedy-SWI and Root-SWI we

examine three algorithms on 15 different information extraction tasks from 8 different

document collections. Many of these tasks are fairly standard and have been used in

testing a variety of IE techniques. The tasks can be broken into three sets: natural

(unstructured), partially structured, and highly structured. The breadth of these

collections allows for a better analysis of the algorithms on a wider spectrum of tasks

than has previously been studied. The natural text documents come from biomedical

journal abstracts and contain little obvious structural information. The partially

structured documents closely resemble natural text, but contain more high level structure

and canonical formatting. These documents still consist primarily of natural language,

but contain some regularities in formatting and annotations. For example, it is common

for key fields to be preceded by an identifying label (e.g. “Speaker: Dr. X”), though this

is not always the case. The highly structured documents consist of web pages that have

often been automatically generated, and contain reliable regularities in formatting,

including location of content, punctuation and style, and non-natural language such as

HTML tags. The partially structured and highly structured document collections were

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 8

obtained primarily from (RISE, 1998) and the natural text documents were obtained from

the National Library of Medicine’s MEDLINE abstract database (National Library of

Medicine, 2001).

There are two collections of natural text documents, both made up of individual

sentences from MEDLINE abstracts. The first collection consists of 555 sentences

tagged with protein names, and their subcellular locations. These sentences were

automatically selected and tagged from a larger collection of documents by searching for

known proteins and locations contained in the Yeast-Protein-Database (YPD). Because

of this labeling procedure, the labels are incomplete and sometimes inaccurate. Ray and

Craven estimated a 10-15% error rate in labeling (Ray, et. al., 2001). The second

collection consists of 891 sentences, containing genes and their associated diseases, as

identified using the Online-Mendelian-Inheritance-In-Man (OMIM) database, and is

subject to the same noisy labeling. Both these collections have been used in other

research, including (Ray, et. al., 2001) and (Eliassi-Rad, et. al., 2001).

It should be noted that these document collections originally contained many

sentences without labeled tuples because they were built for extracting relations.

Therefore, only in cases where both elements of the relation were found was any label

added. Because BWI is designed to extract only single fields, and not relations, we were

forced to remove these documents, since many of them in fact contained examples of one

of the desired fields, but as they were unlabeled, they presented BWI with contradictory

information. For example, a good protein extraction rule would pull out many of the

labeled proteins, but also many of the unlabeled proteins, and thus it would be considered

a poor rule (and the unlabeled documents outnumbered the labeled documents by almost

an order of magnitude). This still left a challenging set of information extraction tasks,

but as a result our performance on these collections is not directly comparable to

performance reported on the entire set of documents, when used to extract relations.

For the partially structured extraction tasks, we examine three different document

collections. The first two were taken from RISE, and consist of 486 speaker

announcements (SA) and 298 Usenet job announcements (Jobs). In the speaker

announcement collection, four different fields were extracted: the speaker’s name (SA-

speaker), the location of the seminar (SA-location), the starting time of the seminar (SA-

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 9

stime) and the ending time of the seminar (SA-etime). In the job announcement

collection, three fields were extracted: the message identifier code (Jobs-id), the name of

the company (Jobs-company) and the title of the available position (Jobs-title).

We constructed the third partially structured documents from a collection of 630

MEDLINE journal citations. These documents contain full MEDLINE article citations

for hip arthroplasty surgery, which consist of author/journal/publication info, MeSH

headings (a standard controlled vocabulary of medical subject keywords), and other

related information, including the text of the paper’s abstract about 75% of the time. The

task is to identify the beginning and end of the abstract text, if the citation includes one

(AbstractText). The abstracts are generally large bodies of text, but without any

consistent marker for the beginning or end, and the information that precedes or succeeds

the abstract text also varies from citation to citation.

Finally, the highly structured tasks are taken from three different document

collections, also in RISE: 20 web pages containing restaurant descriptions from the Los

Angeles Times (LATimes), where the task is to extract the list of accepted credit cards

(LATimes-cc); 91 web pages containing restaurant reviews from Zagat’s Guide to Los

Angeles restaurants (Zagat’s), where the task is to extract the restaurant’s address

(Zagats-addr); and 10 web pages containing responses from an automated stock quote

service (QS), where the task is to extract the date of the response (QS-date). Note that

although these collections tend to contain a small number of documents, many of the

individual documents are actually comprised of several separate entries (e.g. there are

often multiple stock quote responses or restaurant reviews per web page).

3.2 Experimental setup

The performance of the different rule-based IE methods on these data sets was evaluated

by three different standard metrics: precision, recall, and F1 (the harmonic mean between

precision and recall). Each result presented is the average of 10 random 75/25 train/test

splits. For all algorithms, a lookahead value, L, of 3 tokens was used. For the natural

and partially structured texts (YPD, OMIM, SA, Jobs, and AbstractText), BWI’s default

wildcard set was used, and for the web pages (LATimes, Zagat’s, and QS), the default

lexical wildcards were also used. A graphical summary of our results can be seen in

Figure 2. For complete numerical results, see Table 1 at the end of this paper.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 10

To understand the differences between BWI and SWI, we performed four sets of

tests. First, we ran BWI with the same number of rounds of boosting as was used in

(Freitag & Kushmerick, 2000): for the, YPD, OMIM, SA, Jobs, and AbstractText

document collections, 500 rounds of boosting were used; for the LATimes, Zagat’s, and

QS document collections, 50 rounds were used. Next, we ran Greedy-SWI and Root-

SWI on the same tasks until all of the examples were covered. The actual number of

iterations for which these algorithms ran varied across the different IE tasks. These

numbers of iterations are presented in Table 2 at the end of the paper. Finally, we ran

BWI for the same number of iterations that it took for Root-SWI to complete each task

(e.g. 323 rounds for YPD-protein, 1 round for QS-date, etc.).

3.3 Experimental results

To investigate whether BWI outperforms the greedy approach of SWI, we compared

Greedy-SWI and BWI. BWI appears to perform better than SWI—the F1 values for

0

0.2

0.4

0.6

0.8

1

Precision Recall F1
0

0.2

0.4

0.6

0.8

1

Precision Recall F1

0

0.2

0.4

0.6

0.8

1

Precision Recall F1

Figure 2: Performance of the four IE methods examined in this paper, separated by overall regularity of

extraction task (indicated above each chart), averaged in each case over the set of tasks in the given domain.

Highly structured Partially structured

Natural text

BWI
Fixed-BWI
Root-SWI
Greedy-SWI

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 11

BWI are higher for all the highly structured and natural text tasks studied. Greedy-SWI

has slightly higher F1 performance on two of the medium structured tasks, but

considerably lower performance on the other three. Generally, Greedy-SWI has slightly

higher precision, while BWI tends to have considerably higher recall.

Given these results, the logical next step is determining what part of BWI’s

success comes from the difference in scoring functions used by the two algorithms, and

what part comes from how many rules are learned. To explore the first of these

differences, we compared Greedy-SWI and Root-SWI, which differ only by their scoring

function. Greedy-SWI tends to have higher precision while Root-SWI tends to have

higher recall. However, they have similar F1 performance, a result that is illustrated

further by comparing BWI to Root-SWI. BWI still has higher F1 performance than

Root-SWI in all but three medium structure tasks, despite the fact that they use an

identical scoring function.

There are only two differences between BWI and Root-SWI. First, Root-SWI

removes all positive examples covered after each iteration, whereas BWI merely

reweights them. Second, Root-SWI terminates as soon as all positive examples have

been covered, whereas BWI continues to boost for a fixed number of iterations.

Examining Table 2 reveals that Root-SWI always terminates after many fewer iterations

than were designated for BWI. In (Freitag, et. al., 2000), they examined BWI’s

performance as the number of rounds boosting increased, revealing that in many cases,

results still improved even after all 500 iterations.

To investigate this idea further, we ran BWI for the same number of iterations as

it took Root-SWI to complete each task (we call this method Fixed-BWI). Recall that the

number of rounds Fixed-BWI runs for depends on the extraction task. Here the results

appear to vary qualitatively with the level of structure in the domain. In the highly

structured tasks, Fixed-BWI and Root-SWI perform nearly identically. In the medium

structured tasks, Fixed-BWI tends to have exhibit higher precision but lower recall than

Root-SWI, resulting in similar F1 values. In the natural text tasks, Fixed-BWI has

considerably higher precision and recall than Root-SWI.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 12

4 Analysis of experimental results

In this section, we discuss our experimental results from two different axes. We examine

the effect of the algorithmic differences of the IE methods studied, and we look at how

overall performance is affected by the inherent difficulty of the IE task.

4.1 Why BWI outperforms SWI

The set of experiments performed yield a detailed understanding of how BWI’s

algorithmic differences allow it to consistently achieve higher F1 values than SWI. The

root of these differences is that BWI uses boosting to learn rules as opposed to set

covering. Boosting has two complementary effects. First, boosting continually reweights

all positive and negative examples to focus on the increasingly specific problems that the

existing set of rules is unable to solve. This tends to yield high precision rules, as is clear

from observing that Fixed-BWI consistently has higher precision than Root-SWI, even

though they use the same scoring function and learn the same number of rules. While

Greedy-SWI also has high precision, this is achieved by using a scoring function that

doesn’t permit any negative examples to be covered by any rules. This results in a lower

recall than the other three methods, because it is hard to learn general rules with wide

coverage without covering some negative examples.

Second, boosting allows BWI to continue learning even when the existing set of

rules already covers all the positive training examples. Examples are merely reweighted

after each iteration, rather than being removed entirely. In contrast, SWI is inherently

limited in the total number of boundary detectors it can learn from a given training set.

This is because every time a new detector is learned, all matching examples are removed,

and training stops when there are no more positive examples left to cover. Since each

new detector must match at least one positive example, the number of boundary detectors

SWI can learn is at most equal to the number of positive examples in the training set (and

usually many fewer detectors are learned because multiple examples are covered by

single rules). The ability to continue learning rules means that BWI can not only learn to

cover all the positive examples in the training set, but it can widen the margin between

positive and negative examples, learning redundant and overlapping rules, which together

better separate the positive and negative examples.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 13

4.2 Rule-based IE methods and task difficulty

These two assets of boosting (learning specific rules, but learning more of them) together

give BWI the consistent advantage in F1 performance over SWI that was observed

empirically above. However, the difficulty of the extraction task clearly also has a

pronounced effect on the performance of all four methods. We now turn from this

general analysis to a specific investigation of each domain.

4.2.1 Highly structured

This set of tasks is by far the easiest for all methods to deal with—it’s no coincidence tha t

they’re often referred to as “wrapper tasks” as learning the regularities in automatically

generated web pages was precisely the problem for which wrapper induction was

originally proposed as a solution. All methods have near-perfect precision, and SWI

tends to cover all examples with only a few iterations.

Surprisingly, the same level of performance is not present for SWI’s recall.

While these tasks are all highly regular, the regularities learned on the first couple of

iterations aren’t the only important ones. Neither changing the scoring function from

greedy to root nor changing the iteration method from set covering to boosting fixes this

problem, as Root-SWI and Fixed-BWI have virtually identical performance to that of

Greedy-SWI. However, because BWI continues to learn new and useful rules even after

all examples are covered, it is able to learn secondary regularities that increase its recall

and capture the differences that are missed by a smaller set of rules.

4.2.2 Medium structured

In this set of collections, we see the largest variation in performance by manipulating the

components of the basic algorithms investigated. Changing Greedy-SWI’s scoring rule

to use BWI’s root scoring function results in a tradeoff between increased recall and

decreased precision and also a slightly higher F1. By allowing rules to cover some

negative examples, more general rules can be learned that have broader coverage (higher

recall), but also result in some negative examples being covered as well (lower

precision). Root-SWI consistently terminates after fewer iterations than Greedy-SWI,

confirming that it is indeed covering more examples with fewer rules.

Changing from set covering to boosting as a means of learning multiple rules also

results in a precision/recall tradeoff with little change in F1. As mentioned earlier,

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 14

boosting reweights the examples to focus in on the hard problems. This results in rules

that are very specific (higher precision), but also very local (lower recall). Boosting also

results in a slower learning curve (measured in performance vs. number of rules learned),

because positive examples are often covered multiple times before all examples have

been covered once. SWI explicitly removes all covered examples, focusing at each

iteration on a completely new set of examples. The result is that Fixed-BWI can’t learn

enough rules to overcome its bias towards precision in the number of iterations Root-SWI

takes to cover all the positive examples. However, if the full number of iterations is used,

BWI compensates for this slow start by learning enough rules to ensure high recall

without sacrificing this high precision. This ability to keep learning rules is only possible

when using boosting, because set covering will always stop as soon as it runs out of

examples to cover.

4.2.3 Natural text

Extensive testing of BWI on natural text has not been previously done, though it was the

clear vision of Freitag and Kushmerick to pursue research in this direction. As can be

seen in Figure 2, there are a number of qualitative differences in performance on the

natural text documents when compared to the more regular collections previously

studied. All the methods have considerably lower precision, despite the inherent high

precision bias of the boundary detectors. All the methods also experience a large

decrease in recall. This is mainly due to the fact that the algorithms often learn little

more than the specific examples seen during training, which usually don’t appear again in

the test set. Looking at the specific boundary detectors learned, most simply memorize

individual labeled instances of the target field, ignoring context altogether (i.e. the fore

detectors have no prefix, and the target field as the suffix, and vice versa for the aft

detectors). Changing SWI’s scoring function from greedy to root results in a marked

decrease in precision with only a tiny increase in recall. Negative examples are allowed

to be covered, but the rules learned aren’t sufficiently more general to increase coverage

noticeably.

Unlike with the partially and highly structured tasks, Fixed-BWI has both higher

precision and higher recall than Root-SWI. The high precision is explainable as before

because reweighting focuses on difficult problems and learns specific solutions. In the

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 15

more regular document collections, this also meant that the rules were too local. In this

case, however, it actually increases recall. The reason is that while already covered

examples are down-weighted during boosting, they are not removed entirely as with SWI.

Thus, BWI remains sensitive to the accuracy and coverage of all the rules it learns. In

contrast, SWI quickly eliminates the regularities that can be easily found, and then begins

covering the examples one at a time. Thus, it completely ignores the performance of new

rules on already covered examples. This problem is compounded by the fact that BWI

reweights both positive and negative examples, while SWI never removes negative

examples. This is particularly troublesome if we consider that these data sets were

labeled automatically, and are partially inaccurate (as mentioned in 3.1). SWI only

covers positive examples once, and it is more sensitive to negative examples, so the

perceived difference in regularity between the training and test set becomes more

pronounced as the algorithm continues to eliminate positive examples.

Unlike in the more structured document collections, allowing BWI to run for the

full 500 iterations caused it to perform worse than Fixed-BWI, suggesting that the extra

iterations result in overfitting. Because of the irregularity of the data, Fixed-BWI runs for

a larger number of iterations than on easier tasks, and thus the extra benefit of continuing

to boost is diminished. Furthermore, these last rounds of boosting tend to concentrate on

only a few highly weighted examples, meaning that unreliable rules are learned, which

are more likely to be artifacts of the training data than true regularities.

5 Quantifying task regularity

In addition to the observed variations resulting from changes to the scoring function and

iteration method of BWI and SWI, it is clear that the inherent difficulty of the extraction

task is also a strong predictor of performance. Highly structured documents such as those

generated from a database and a template are easily handled by all the algorithms we

tested, whereas natural text documents are uniformly more difficult. It is thus interesting

to investigate methods for quantifying the regularity of a document set beyond the broad

classes used thus far.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 16

5.1 SWI-Ratio as a measure of task regularity

We propose that a good measure of the regularity of an extraction task is the ratio of the

number of iterations SWI takes to cover all the positive examples to the total number of

positive examples in the task. We call this measure the SWI-Ratio, for obvious reasons.

In the most regular limit, a single rule would cover an infinite number of documents, and

thus the SWI-Ratio would be 1/� = 0. At the other extreme, in a truly irregular set of

documents, SWI would have to learn a separate rule for each positive example (i.e. there

would be no generalization possible), so for N positive examples, SWI would need N

rules, for an SWI-Ratio of N/N = 1. Notice that since each SWI rule must cover at least

one positive example, the number of SWI rules learned for a given document set will

always be less than or equal to the total number of positive examples, and thus the SWI-

Ratio will always be between 0 and 1, with a lower value indicating a more regular

extraction task.

SWI-Ratio is a meaningful and well-motivated measure of task regularity for

several reasons. First, it is a relative measure with respect to the amount of text, so one

can use it to compare regularity of small and large documents alike. Second, it is general

and objective, because SWI is such a simple algorithm (essentially equivalent to greedy

set covering), and since SWI’s scoring rule doesn’t allow any negative examples to be

covered, it is an unbiased account of how many non-overlapping rules one would need to

actually cover every positive example without covering any negative examples. Finally,

it is easy and uncontroversial to attain. There are no free parameters to set (other than the

lookahead for extending boundary-detector rules, which we fixed across all our tests),

and it is simple and relatively efficient to run SWI before or while running any other

technique.

5.2 Performance and task regularity

In addition to the clear differences in performance between the three classes of extraction

tasks presented in the previous sections, there is also wide variation within each

document collection. Although the results in Figure 2 are easily interpreted, we must be

careful not to forget that these values represent averages over several extraction tasks.

However, using the SWI-Ratio, we can now compare algorithms on a per-task basis.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 17

This will reveal in greater detail both how performance is related to task difficulty, and

whether BWI reliably outperforms SWI.

 In Figure 3, the F1 of Greedy-SWI and BWI are plotted for each task versus its

SWI-Ratio. As noted in section 4, BWI performs better than Greedy-SWI on all but two

tasks and the difference between the F1 for those two tasks is small. By plotting the two

algorithms’ performance versus the SWI-Ratio, we can examine how the two algorithms

perform as the regularity of the documents decreases. There is a consistent decline in the

performance as the regularity of the document decreases for both algorithms. Also, there

does not seem to be a significant divergence in performance between the two algorithms

as the regularity of the task decreases. So, although BWI appears to reliably outperform

SWI, both these algorithms are still limited by the regularity of the text.

6 What rule-based IE methods are learning

Having investigated BWI as an important new IE technique, and having understood its

specific advantages over comparable strategies, we now turn to the more general issue of

rule-based IE methods and their performance as a class. Specifically, we investigate the

relevant information that these methods do and do not appear to be learning during

training.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

SWI-Ratio

F1

Greedy-SWI
BWI

Figure 3: F1 performance for BWI and Greedy-SWI on the 15 different extraction tasks, plotted vs. the
SWI-Ratio of the task, with separations between highly structured, partially structured, and natural text.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 18

As has been seen in the experimental section and in numerous other papers, rule-

based systems perform quite well with fairly structured tasks. If the target field to be

extracted is canonically preceded or followed by a given set of tokens (or tokens of a

distinct type, matched by the wildcards used), this context is readily learned by boundary

detectors. This is a common occurrence in highly structured and partially structured

texts, where fields are often preceded by identifying labels (e.g. “Speaker: Dr. X”), or

followed by the same pieces of information (e.g. in the Zagat’s surveys, the restaurant

address is almost always followed by its telephone number, which is easily distinguished

from the rest of the text).

Surprisingly, there is a good deal of this type of regularity to be exploited even in

more natural texts. For example, when extracting the locations where proteins are found,

“located in” and “localizes to” were found to be common prefixes, and were learned early

on by BWI. This is reflects the fact that people often refer to a given type of information

in a specific context, and thus specific lead-in words or following words are common and

used in many instances.

While rule-based IE methods are primarily designed to identify the contexts in

which target fields occur, it is important to realize that BWI and other methods are also

learning some things about the regularities that occur in the fields being extracted. In the

case of BWI, boundary detectors extend into the edge of the target field as well as into

the local context, so the fore detectors often learn what the first few tokens of the target

field look like (that is, if the field tends to have a regular beginning), and the aft detectors

often learn what the last few tokens look like.

With short fields, this means that in many cases, individual boundary detectors are

doing nothing more than memorizing instances of the target field. This is often the case

in the MEDLINE articles, where specific gene names, protein names, etc. get memorized

when their context isn’t otherwise helpful. However, with longer fields, there is still

important information learned. For example, in the MEDLINE citations, the abstract text

often starts with phrases like “OBJECTIVE: ”, or “We investigated…”

In addition to learning the canonical starting and ending tokens in the target field,

BWI learns a length distribution of the number of tokens in the extracted field.

Specifically, field lengths are recorded for each training example, and then this histogram

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 19

is normalized into a probability distribution once training is complete. In BWI, this is the

only piece of information that explicitly ties the fore detectors and aft detectors together.

Nevertheless, this information can be extremely useful. When BWI tests on a new

document, it first notes every fore and aft detector that fire, and then must pair them up to

find specific token sequences. BWI only keeps a match that is consistent with the length

distribution. Specifically, it will drop matches whose fore and aft boundaries are farther

apart or closer together than has been seen before during training, and given two

overlapping matches of equa l detector confidence, it will prefer the match whose length

has been seen more times.

In all but the most regular IE tasks, a single extraction rule is insufficient to cover

all the positive examples, so it is necessary to learn a set of rules that capture different

regularities. An important piece of information to capture, then, is the relative

prominence of these different types of patterns, because it distinguishes the general rules

from the exceptional cases. In the case of BWI, this information is learned explicitly by

assigning each boundary detector a confidence value, which is proportional to the total

weight of positive examples covered by the rule during training, and is thus broadly

reflective of the generality of the rule. In SWI, rules tha t cover the most examples are

learned first, so there is a ranking present as well.

7 Limitations of BWI (what rule-based IE methods aren’t learning)

While BWI and similar methods currently achieve high levels of performance on many

document collections, there is substantial room for improvement. There are useful pieces

of information that most IE methods currently ignore that might increase the apparent

regularity of the extraction task were they available. There are also important facts and

clues about many extraction tasks that the current representations of such methods are

unable to capture. Finally, there are issues with the speed and efficiency of current

methods, as well as how matches are scored and presented, that limit the usefulness of

these systems. We investigate each of these areas in more detail in this section.

7.1 Representation

BWI learns sets of fore and aft boundary detectors and a histogram of the lengths of the

fields. These boundary detectors are short sequences of specific words or wildcards that

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 20

directly preceed or succeed the target field or that are found within the target field. As a

result of this representation, there are valuable sources of regularity that cannot be

captured with the current representation, such as a more detailed model of the field to be

extracted, the global location of the field within the document, and any structural

information such as that exposed by a grammatical parse or an HTML/XML document

tree.

7.1.1 Weak model of the content being extracted

Clearly an important clue in finding and extracting a particular fact is recognizing what

relevant fragments of text look like. As mentioned in the previous sections, BWI learns

to recognize the canonical beginnings and endings of the target field, as well as a

distribution over the length of the extracted field. However, both these pieces of

information are learned in a superficial manner, and much of the regularity of the field is

ignored entirely.

Currently, BWI normalizes its frequency counts of field lengths in the training

data without any type of smoothing or binning. This means that any candidate field to be

extracted whose length is not precisely equal to that of at least one target field in the

training data will be categorically dismissed, no matter how compelling the boundary

detection. While this does not tend to cause problems for very short fields (because there

are only a few possible lengths), it is a tremendous problem for fields with a wide

variance of lengths.

For example, in the MEDLINE citations task, the abstract texts to be extracted

have a mean length of 230 tokens, with a standard deviation of 264 tokens. With only

462 positive examples of abstracts (in 630 citations), it’s not surprising that many

reasonable token lengths are simply never seen. When running our experiments on this

document collection, we had to set BWI to ignore all length information. Ignoring the

length information resulted in F1 increasing from .1 to .97. This problem could

obviously be remedied by smoothing the distribution somehow, or by at least binning the

lengths prior to normalizing.

Besides the length distribution, the only other information BWI learns about the

content of the target field comes from boundary detectors that overlap into the field.

While for short fields this can mean memorizing entire instances of the target field, in

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 21

most cases there is more information about the canonical form of the target field that

could be captured and exploited. There has been a great deal of work on modeling

fragments of text to identify them in larger documents, most under the title of Named-

Entity Extraction. For example, (Baluja, 1999) report impressive results on finding

proper names in free text, using only models of the names themselves, based on

capitalization, common prefixes and suffixes, and other word-level features. NYMBLE

is another notable work in this field (Bikel, 1997). Perhaps combining these field-finding

methods with BWI’s context-finding methods would yield superior performance in both

domains.

7.1.2 Limited expressiveness of boundary detectors

Boundary detectors were designed to capture the flat, local context of the field to be

extracted by learning short sequences of surrounding tokens. This is the source of their

success and their failure. On the one hand, they are good at capturing regular, sequential

information around the field to be extracted, resulting in high precision. On the other

hand, the high precision design of current boundary detectors tends to result in rules

having poor recall (Freitag et. al., 2000). This is not so much a problem for highly

structured tasks, because there are only a few regularities that need to be captured.

However, these rules are less effective in partially structured and natural texts, because

regularities in context are less consistent and reliable. This results in many rules being

learned that only cover one or a few examples.

Another limitation of existing boundary detectors is that they completely ignore

any grammatical structure of sentences and a great deal of information present in

HTML/XML documents. That is, boundary detectors can only capture information about

the tokens that appear directly before or after the target field in the linear sequence of

tokens in a document. BWI and similar methods do not contain any information about

the parent nodes, siblings, or child position in the grammar or XML/HTML tree in which

they implicitly belong. In addition, the boundary detector format does not allow BWI to

take advantage of part-of-speech information, and other similar features that have been

shown to contain important sources of regularity.

While context information is often the most relevant for extracting fields, global

information about the relative position of the field within the context of the entire

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 22

document can also be important. For example, despite BWI’s impressive performance on

the abstract text data set, the most obvious clue to finding an abstract in a MEDLINE

citation is, “look for a big block of text in the middle of the citation.” There is no way to

capture this global location knowledge using BWI’s existing representation. Additional

knowledge that BWI is unable to learn or use includes, “the field is in the second

sentence of the second paragraph if it’s anywhere,” “the field is never more than one

sentence long,” “the field doesn’t have any line breaks inside it,” and so on.

7.2 Scoring

Every match that BWI returns when being tested has an associated confidence score,

which is the product of the confidences of the fore and aft boundary detectors along with

the probability of the resulting field length. The scoring of the boundary detectors is

important in identifying the most useful rules and also trying to assess how well the rules

will perform. This score may be used for pruning less productive rules and/or

thresholding to get a precision/recall tradeoff.

While the scores are a good measure of the likelihood with which a proposed

match is in fact correct, these scores are not as meaningful or useful as actual match

probabilities would be. First of all, the confidence scores are unbounded positive real

numbers, and thus it is difficult to assess the relative confidence of matches in different

document collections which have a large dynamic range. This also makes it hard to set

absolute confidence thresholds for accepting matches.

Second, it’s hard to compare the confidence of full matches and partial matches,

because the components of the confidence score have dramatically different ranges. This

obscures the “decision boundary” of the learned system, which would otherwise be an

important target for improving performance. Finally, without probabilities, it is difficult

to use the match scores in a larger framework, for example Bayesian evidence

combination or decision-theoretic action planning. The basic problem is that while the

scores are useful for stating the relative confidence of two matches in the same document

collection, they are not useful for comparing matches across collections, nor are they

useful for providing an absolute measure of confidence. Unfortunately there is much

demand for the later two cases.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 23

Another problem with using unbounded positive numbers to score boundary

detectors is that no distinction can be made between a fragment of text that has appeared

numerous times in the training set as a negative example, a field that has never been seen

labeled one way or the other, and a field where one boundary detector has confidently

fired. In other words, there is no way to tell a “confident rejection” from a “near miss.”

This “negative space” is as important as the positive space for communicating confidence

in extracting fragments of text, but it has been completely collapsed into a single point

(confidence = 0).

BWI also implicitly assumes that there is only one type of field being extracted

from a given data set. Most documents contain multiple pieces of related information to

be extracted, and the position of one field is often indicative of the position of another.

However, BWI can only extract fields one at a time, and entirely ignores the relative

position of different fields. For example, in the speaker announcements, even though

there are four fields being extracted, they are all trained and tested on independently, and

the presence of one field is in no way considered as usefully predictive of the location of

another. This also makes it difficult to extend methods like BWI to extract relationships

in text, which is often as important as extracting individual fields (Muslea, 1999).

Furthermore, it is inconvenient for real-world settings, where ideally one should be able

to label and train on a single document at a time, with multiple fields labeled in each

document, rather than going through every document in the set multiple times.

7.3 Efficiency

In addition to the clear need to develop high performance IE systems, speed and

efficiency of training and testing is also a critical component for making these systems

practical for solving real-world problems.

7.3.1 BWI is slow to train and test

Even on modern workstations, training BWI on a single field with even a few hundred

documents can take several hours, and testing can take several minutes. The slowness of

training and testing also make using larger document collections or larger lookeahead for

detectors prohibitive, even though both might be necessary to achieve high levels of

performance on complex tasks. This also inhibits reliable comparison of different IE

methods, and makes BWI unsuitable for the engine of an interactive system, such as with

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 24

iterative human labeling during active learning. There are a number of factors that make

BWI slower than may be necessary.

The innermost loop of training BWI is finding extensions to boundary detectors.

This is done in a brute-force manner, up to a specified lookahead parameter, L, and

repeated until no better rule can be found. Finding a boundary detector extension is thus

exponential in L, because every combination of tokens and wildcards is enumerated and

scored, which makes even modest lookahead values prohibitively expensive. As a result,

a value of L=3 is normally used to achieve a balance between efficiency and

performance. Freitag et. al. note that while this was usually sufficient, there were times

when a value up to L=8 was required to achieve the best results. Training with such a

high lookahead is usually prohibitively slow, however, and thus the “local context”

learned tends to be very local indeed.

Although testing is considerably faster then training, it too is inefficient and slow.

One technique for improving testing speed is to compress the set of boundary detectors

learned during training, before applying them to a set of test documents. For example,

one could eliminate redundancy by combining duplicate detectors, or eliminating

detectors that are logically subsumed by a set of other detectors (since whenever one

would match, so would the other). This is a practice used by (Cohen, 1999) in SLIPPER,

as well as by (Ciravegna, 2001) in (LP)2 for partially structured tasks, but it’s doubtful

how useful it would be in less regular document collections, which unfortunately are the

ones in which a large number of detectors have to be learned. There are also more

sophisticated ways to compress a set of rules, many of which are somewhat lossy

(Margineantu, 1997; Yarowsky, 1994). However a tradeoff between speed and accuracy

should always be evaluated.

7.3.2 BWI can’t learn incrementally

Once BWI has been trained on a given set of labeled documents, if a few more

documents are labeled and added, there is currently no way to avoid training on the entire

set from scratch again. In other words, there is no way to learn some extra marginal

information from a few additional documents, even though the vast majority of what will

be learned in the second run will be identical to what was learned before. This is more a

problem with boosting than with BWI specifically, because the reweighting that occurs at

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 25

each round depends on the current system’s performance on all the documents, so even

adding a few extra documents might mean that the training takes a very different

direction. Nevertheless, it is clearly desirable to be able to add documents to a data set as

they become labeled, and not to have to completely retrain each time.

7.3.3 BWI doesn’t know when to stop boosting

While BWI’s ability to boost for a fixed number of rounds instead of terminating once all

positive examples have been covered is clearly one of its advantages, it’s difficult to

know how many rounds to prescribe. Depending on the difficulty of the task, a given

number may be insufficient to learn all the exceptions, or it may be overkill and lead to

overfitting or massive redundancy. Ideally, BWI would be able to continue boosting for

as long as useful, and then shut itself off when it deems that continuing to boost would do

more harm than good. This could also serve as an alternative to having to go back and

prune the trained rule list, because the rules learned in the final iterations are likely to be

the least reliable and useful.

Cohen and Singer address the problem of when to stop boosting directly in their

design of SLIPPER by using internal five-fold validation on a held out part of the training

set (Cohen, 1999). For each fold, they first boost up to a specified maximum number of

rounds, testing on the held out data after each round, and then they select the number of

rounds that lead to the lowest average error on the held out set, finally training for that

number of rounds on the full training set. This is certainly a reasonable thing to do, and it

has the advantage of being sensitive to the difficulty of the task, but it also has several

drawbacks. First of all, it makes the already slow training process six times slower, when

presumably at least part of the motivation behind finding an optimal number of rounds is

to avoid spending more time than necessary during training. Second, they replaced the

free parameter of the actual number of boosting rounds with another free parameter for

the maximum number of rounds to try during cross-validation. Setting the value too low

will mean that the best number of rounds is never found, while setting the number of

rounds too high will mean much wasted effort.

Perhaps it would be possible to use BWI’s own detector confidences to tell when

continuing to boost is futile or harmful. Since detector scores tend to decrease as the

number of boosting rounds increases, it might be possible to set an absolute or relative

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 26

confidence threshold below which to stop boosting, or to determine when the curve has

flattened out and is only picking up exceptional cases one at a time. For example,

(Ciravegna, 2001) prunes rules that cover less than a specified number of examples,

because they are unreliable, and generally more likely to cause spurious matches than

actual ones.

8 Extending rule-based IE methods

In this section, we present several suggestions for advancing the research agenda of rule-

based IE methods as a whole. We concentrate on identifying new sources of information

to consider, constructing new representations for handling them, and producing more

meaningful output from the system. In some cases, we present preliminary results that

appear to corroborate our hypotheses. In other cases, we cite existing work by other

researchers that we believe represent steps in the right direction. Our hope is that this

will provide a clearer organizational structure for existing research, as well as an

inspiration for novel projects.

8.1 Exploiting grammatical structure of sentences

Section 7.1.2 discusses the importance of using grammatical structure in natural language

or hierarchical structure in HTML and XML documents. Ray and Craven have taken an

important first step in this direction (Ray, et. al., 2001) by preprocessing natural text with

a shallow parser, and then flattening the parser output by delimiting sentences into typed

phrase segments. The text is then marked up with this grammatical information, and is

used as part of the information extraction process (they use Hidden Markov Models, but

this technique is generally applicable). For example, using XML tags to represent these

phrase segments, they construct sentences from MEDLINE articles such as:

<NP_SEG>Uba2p</NP_SEG> <VP_SEG>is located largely</VP_SEG>

<PP_SEG>in</PP_SEG> <NP_SEG>the nucleus </NP_SEG>.

While the parses produced aren’t perfect, and the flattening often further distorts

things, this procedure is fairly consistent in blocking out noun, verb, and prepositional

phrases. An information extraction system can then learn boundary detectors that include

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 27

these tags, allowing it, for example, to represent the constraint that proteins tend to be

found in noun phrases, and not in verb phrases. Ray and Craven report that their results

“suggest that there is value in representing grammatical structure in the HMM

architectures, but the Phrase Model [with typed phrase segments] is not definitively more

accurate.”

In addition to the results presented in the experimental section, which include Ray

and Craven’s data sets without any grammatical information, we also experimented on

their data using this segmental information in order to see if there were valuable

regularities expressed in this extra content that could be exploited by rule-based IE

methods. We used BWI to extract all the individual fields in the two relations that Ray

and Craven study (proteins and their localizations, genes and their associated diseases).

We ran identical tests with and without the XML tags as shown above. We found that

including the tags uniformly and considerably improved both precision and recall for all

four extraction tasks (Figure 4). In fact, all four tasks saw double-digit percentage

increases in precision, recall, and F1, with an average increase of 21%, 65%, and 46%

respectively.

Using typed phrase segment tags uniformly impoves BWI's
performance on the 4 natural text MEDLINE extraction tasks

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1

A
ve

ra
g

e
p

er
fo

rm
an

ce
 o

n
 4

 d
at

a
se

ts

no tags

tags

Figure 4: Performance of BWI averaged across the four natural text extraction tasks, with and without

the use of typed phrase segments. Shown with standard error bars.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 28

The fact that precision improves when using the phrase segment tags means that

BWI is able to use this information to reject possible fields that it would otherwise return.

The fact that recall also improves suggests that having segment tags helps BWI to find

fields that would otherwise miss. The combination of these results is somewhat

surprising. For example, while not being a noun phrase may be highly correlated with

not being a protein, the inverse is not necessarily the case (i.e. there are plenty of non-

protein noun phrases in MEDLINE articles). Thus we hypothesized that including typed

phrase segment information was actually regularizing the extraction task, enabling rules

to gain greater positive coverage without increasing their negative coverage.

Using the SWI-Ratio we proposed earlier in the paper, we were able to quantify

and address this hypothesis. We ran SWI on all four extraction tasks with and without

tags, and compared their resulting SWI-Ratios (Figure 5). As expected, when we

included the tags, we saw double-digit percentage decreases in the SWI-Ratio of all four

tasks, with an average reduction of 21%. Recall that a lower SWI-Ratio represents a

more regular domain, because it means that the same number of positive examples can be

perfectly covered with fewer rules. We conclude that including this type of grammatical

information, even with existing rule-based IE methods, represents a considerable

advantage for both accuracy and coverage, and is worth investigating in more detail.

The success of including this limited grammatical information immediately raises

the question of what additional grammatical information could be used, and how helpful

it might be. It’s not hard to imagine that exploiting regularities in field context such as

argument position in a verb phrase, subject/object distinction, and so on would be

valuable. For example, Charniak has shown that probabilistically parsing sentences is

greatly aided by conditioning on information about the linguistic head of the current

phrase, even if it’s several tokens away in the flat representation (Charniak, 2001). This

suggests that such information is an important source of regularity, which is exactly what

rule-based IE methods are designed to exploit.

Unfortunately, the existing formulation of boundary detectors is not well

equipped to represent or handle such information. While merely inserting XML tags to

represent typed phrase segments proved useful, such an approach is unprincipled, as it

combines meta- level information with the text itself. Ideally, the representation of

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 29

boundary detectors should be extended to capture and exploit regularities in implicit

higher- level information as well as explicit token information in a document. In the case

of using typed phrase segments, we were able to increase performance while maintaining

the simple, flat representation currently used. However, this approach can only be taken

so far.

8.2 Handling XML / HTML structure and information

Just as the grammatical structure of a sentence presents opportunities for exploiting

structural regularities, the hierarchical structure and attribute information defined by an

XML or HTML document also contain important clues for locating target fields.

However, this information is essentially lost when an XML document is parsed as a

linear sequence of tokens instead of into a Document Object Model (DOM). For

example, tags like <tag> or </tag> that should be treated as single tokens are instead

broken into pieces. More problematic, however, is the fact that many tags contain

namespace references, and attribute-value pairs inside the starting tag, such as <name:tag

att1="val1" att2="val2">. When using flat tokenization, lookahead becomes a

Using typed phrase segment tags uniformly increases the
regularity of the 4 natural text MEDLINE extraction tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

protein location gene disease

Data set

S
W

I-R
at

io

no tags

tags

Figure 5: Average SWI-Ratio for the four natural extraction tasks, with and without the use of typed

phrase segments. Shown with standard error bars.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 30

serious problem, and there is no way to intelligently generalize over such tags (e.g. match

a tag with the same name, require specific attributes/values, etc.).

(Muslea, et. al., 1999) have made some important contributions to solving this

problem with STALKER, which constructs an “embedded catalog” for web pages (a

conceptual hierarchy of content in a document) that allows them to take some advantage

of global landmarks for finding and extracting text. They accomplish this by use of the

“Skip-To” operator, which matches a boundary by ignoring all text until a given sequence

of tokens and/or wildcards. While the token sequences learned with Skip-To operators

arte similar to the boundary detectors used in BWI, they can be combined sequentially to

form an extraction rule that relies on several distinct text fragments, which can be

separated by arbitrary amounts of intermediate text.

Rules in STALKER are learned by starting with the most simple Skip-To rule that

matches a given positive example and greedily adding tokens and new Skip-To operators

as necessary to eliminate covering any negative examples. This approach avoids the

exponential problem of the exhaustive enumeration of boundary detectors used by BWI.

The tradeoff, however, is that the resulting boundary detectors only work for pages with a

highly regular and consistent structure, and the token sequences learned tend to be shorter

and more specific. Furthermore, using Skip-To only approximates the information

available in a true DOM representation.

Another approach to exploiting the structural information embedded in web pages

and XML documents can be found in (Yih, 1997), which uses hierarchical document

templates for IE in web pages, and finds fields by learning their position within the

template’s node tree. The results presented are impressive, suggesting that this is useful

information to have, but currently the document templates must be constructed manually

from web pages of interest, because the hierarchies in the templates are more subjective

than just the HTML parse. This may be less of a problem with XML documents, but

only if the tag-based structure corresponds in some relevant way to the content structure

that is necessary to exploit for information extraction. Similar results are presented by

Liu, et. al. in “XWRAP”, a rule-based learner for web page information extraction that

uses heuristics like font size, block positioning of HTML elements, and so on to construct

a document hierarchy and extract specific nodes (Liu, 2000).

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 31

8.3 Extending the expressiveness of boundary detectors

One quick solution to the problem of incorporating more grammatical and structural

information into the existing rule-based IE framework is the development of a more

sophisticated set of wildcards. Currently, wildcards only cover word- level syntactic

classes, such as “all caps”, “begins with a lower-case letter”, “contains only digits”, and

so on. While these are useful generalizations over matching individual tokens, they’re

also extremely broad. A potentially middle ground might be developing wildcards that

match words of a given linguistic part of speech (e.g. “noun”), a given semantic class

(e.g. “location/place”), or a given lexical feature (e.g. specific prefix/suffix, word

frequency threshold, etc.).

In principle, such wildcards could be built and used with the existing BWI

framework, and would be able to capture regularities that are currently being learned one

instance at a time. However, with many of these new types of wildcards, constructing

either a predefined set of allowable words or a simple online test for inclusion would not

be feasible, and instead we would have to rely either on preprocessing using existing

NLP systems (as Ray and Craven did), or on grammatical/lexical classifiers that could be

used as-needed. Clearly efficiency would become an important issue, particularly during

training when such generalizations would have to be repeatedly posed and checked.

Encouraging results in this direction are already available. For example,

Ciravegna’s (LP)2 system uses word morphology and POS information to generalize the

specific rules it initially learns (Ciravegna, 2001), a process essentially equivalent to

using lexical and POS wildcards respectively. Ciravegna’s results are comparable to

other state of the art methods, including BWI. While (LP)2 also uses rule correction and

rule pruning, Ciravegna attributes “the use of NLP for generalization” as being the most

responsible for the performance of the system. Another clever use of such

generalizations can be found in RAPIER (Califf, et. al., 1999), which uses WordNet

(Miller, 1995) to find hypernyms (a semantic class of words to which the target word

belongs), and uses them in its learned extraction rules. (Yarowsky, 1994) also reports

that including semantic word classes like “weekday” and “month” to cover sets of tokens

improves performance for lexical disambiguation, suggesting that there are indeed

regularities to be exploited at this level of generality.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 32

HTML/XML wildcards that would allow for generalizations such as any “font-

formatting tag” or any “table cell with a specified background color” could also be

employed. These generalizations would not only help increase recall without sacrificing

precision, they might help solve a common problem in wrapper induction, where small

changes to a web page “break” the current learned detectors, and the system has to be

retrained. For example, if a web page changes the font color of a key piece of

information, but the boundary detector has learned a more general rule that identifies any

text with a non-standard font color, it may well continue to fire correctly, whereas a more

specific rule would no longer match at all.

8.4 Turning BWI match scores into probabilities

While improving the performance of IE methods is obviously an important goal, any

progress made will be limited in its usefulness by the output of the system, and thus this

is another critical target for further research. As mentioned in the previous section (7.2),

BWI and similar methods do not yet attach probabilities to the matches they return.

Probability is the lingua franca for combining information processing systems, because

probabilities have both absolute and relative meaning, and because there are powerful

mathematical frameworks for dealing with them, such as Bayesian evidence combination

and decision theory.

Thus, it is worth asking the question, can BWI’s confidence scores be transformed

into probabilities? This question really comes in two pieces. First, are BWI’s confidence

scores meaningful and consistent? That is, does BWI produce incorrect matches with

high confidence, or does its accuracy increase with its confidence? Second, can BWI

learn to correlate its own confidences with the results returned, and thus automatically

calibrate its scores into probabilities?

The first question (are BWI’s scores consistent) can be answered empirically, by

training and testing BWI on different document collections. Ideally, the majority of

BWI’s incorrect predictions would have low confidence compared to its correct

predictions. Such a distribution would be desirable for two reasons. First, it would

mimic a true probability distribution, where a higher score is correlated with a higher

chance of being correct. Second, it would allow users to set a confidence threshold above

which to accept the computer’s guesses, and below which to flag for human follow up.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 33

Our results suggest that BWI’s scores are fairly consistent and amenable to a

threshold setting for regular tasks, but that on hard tasks it is difficult to separate BWI’s

correct and incorrect predictions based only on its ma tch confidences. For the

AbstractText task, confidence scores ranged from 0 to 100, but all of BWI’s incorrect

guesses had confidence scores below 20 (Figure 6). This means that if BWI merely

ignored any of its results below a confidence threshold of 20, it would obtain perfect

precision. However, setting a confidence threshold of 20 would result in 59% recall,

compared with 95% recall with a threshold at 0, because correct answers would also be

pruned. In this case, a lower confidence threshold will increase F1, because most of the

incorrect answers can be pruned without eliminating correct guesses, as can be seen in

the F1 curve in Figure 6, which peaks at a confidence threshold of 10. This means the

confidence scores are behaving roughly as probabilities should, because as the confidence

increases, so does the fraction of correct guesses. Note that the precision for this task is

lower than reported in Table 1 because we considered all of BWI’s matches, whereas

normally BWI eliminates overlapping matches, keeping the candidate with higher

confidence.

Unfortunately, this desirable behavior does not appear to hold up for more

difficult tasks. On the protein task, considered the most difficult both by performance

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

Confidence threshold

P
er

fo
rm

an
ce

Precision if matches below
given confidence threshold
were dropped

Recall if matches below
given confidence threshold
were dropped

F1 if matches below given
confidence threshold were
dropped

Empirical calibrated
probability at given
confidence threshold

Figure 6: Precision, recall, and F1 of BWI on AbstractText task vs. confidence threshold below which

to ignore matches. Shown with empirical probability of matches within each confidence interval.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 34

and by SWI-Ratio, there is no clean way to separate the correct and incorrect guesses

(Figure 7). The highest confidence negative match gets confidence 0.65, however above

this threshold, BWI would only achieve 0.8% recall, because the vast majority of its

correct guesses are below a confidence threshold of 0.35. The highest F1 in this case

comes from a confidence threshold of 0, with a precision of 52% and a recall of 24%

(these numbers are taken from an individual train/test fold and thus differ slightly from

the averages presented in Table 1). In other words, there is no way to improve

performance by setting a confidence threshold, because there is not a smooth transition to

a higher density of correct guesses as match confidence increases.

These analysis techniques immediately suggest a direct way of calibrating scores

into probabilities—bin BWI’s guesses by confidence threshold, and set the probability as

the fraction of correct guesses in the bin. This essentially says that if for a given

confidence threshold, say 75% of the guesses turn out to be correct, then a new match

with the same confidence also has a 75% of being correct. This also has the desirable

property that the more consistent the confidence scores, the more these calibrated

probabilities become true probabilities. However, even for difficult tasks in which

consistency is impossible, and thus there will not be a smooth increase in probability as

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Confidence threshold

P
er

fo
rm

an
ce

Precision if matches below
given confidence threshold
were dropped

Recall if matches below
given confidence threshold
were dropped

F1 if matches below given
confidence threshold were
dropped

Empirical calibrated
probability at given
confidence threshold

Figure 7: Precision, recall, and F1 of BWI on YPD-protein task vs. confidence threshold below which

to ignore matches. Shown with empirical probability of matches within each confidence interval.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 35

confidence increases, these calibrated probabilities are still meaningful, because they will

capture the remaining uncertainty in any guesses made.

9 Concluding remarks

Current information extraction methods are able to find and exploit regularities in text

that come from local word ordering, punctuation usage, and distinctive word- level

features like capitalization. This information is often sufficient for partially and highly

structured documents because the regularity is at the surface level—in the use and

ordering of the words themselves. However, these methods perform considerably worse

when dealing with natural text, because such regularities are less apparent. Nevertheless,

there are still important regularities in natural text documents, at the grammatical and

semantic levels. We have shown that by revealing even limited grammatical information

via XML results in considerably higher precision and recall for these types of tasks.

Despite the differences in behavior of these algorithms on document collections

of varying regularity, there has been limited analysis of the specific relationship between

regularity and performance. We proposed the SWI-Ratio as a quantitative measure of

document regularity, and we have used it to illustrate this relationship in greater detail

than has previously been possible. Since the SWI-Ratio objectively measures the relative

regularity of a document collection (as the number of iterations SWI requires to perfectly

cover all and only positive examples divided by the total number of positive examples), it

is suitable for comparison across data sets of varying sizes and content.

While all the algorithms we studied perform worse on less regular document

collections, they still exhibit consistent differences. Many current rule-based IE methods

(including SWI, proposed in this paper) employ some form of set covering to combine

multiple extraction rules. These methods are relatively simple to implement, however,

they are all fundamentally limited in that they remove positive examples once covered,

and cannot learn more rules than it takes to cover the entire training set. Boosting

overcomes this problem by reweighting covered examples instead of removing them. We

have shown that BWI exploits this property to learn additional useful rules even after all

examples have been covered, and consistently outperforms SWI and related methods.

Reweighting also helps by focusing BWI on learning specific rules for the exceptional

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 36

cases missed by the general rules, resulting in higher precision. The combination of

being able to learn accurate rules, and keep training to broaden coverage is the source of

BWI’s success.

While we have focused on rule-based IE methods as a class, and on BWI in

particular, many of the observations made in this paper hold for information extraction as

a whole. For example, while Hidden Markov Models employ an ostensibly different

representation, they too tend to learn local flat regularities in adjacent word location, and

distinctive use of punctuation, capitalization, and other surface regularities also exploited

by BWI. Thus the discussion of what sources of information are currently being ignored

are relevant to both classes of methods. We believe that there are many opportunities for

improving both the performance and usefulness of current information extraction

methods. We have outlined several suggestions for addressing the limitations of current

methods discussed in this paper, all of which would benefit from further investigation.

Acknowledgements

The authors would like to thank Dayne Freitag for his input and for making the BWI code

available, Mark Craven for giving us the natural text MEDLINE documents with

annotated phrase segments, and MedExpert International, Inc. for its financial support of

this research. This work was conducted as part of the California Institute for

Telecommunications and Information Technology, Cal-(IT)2.

References
Baluja, S., Mittal, V., & Sukthankar, R. (1999). Applying machine learning for high performance named-

entity extraction. In Proceedings of the Conference of the Pacific Association for Computational

Linguistics (pp. 365-378).

Bikel, D., Miller, S., Schwartz, R., & Weischedel, R. (1997). Nymble: a High-Performance Learning

Name-finder. In Proceedings of the Fifth Conference on Applied Natural Language Processing,

pp. 194-201.

Califf, M. E., & Mooney, R. J. (1999). In Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI-99), Orlando, FL, pp. 328-334.

Califf, M. (1998). Rational Learning Techniques for Natural Language Information Extraction, Artificial

Intelligence 1998, pg. 276.

Cardie, C. (2001). Rule Induction and Natural Language Applications of Rule Induction,

http://www.cs.cornell.edu/Info/People/cardie/tutorial/tutorial.html.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 37

Charniak, E. (2001). Immediate-Head Parsing for Language Models. In Proceedings of the 39th Annual

Meeting of the Association for Computational Linguistics (2001).

Ciravegna, F. (2001). (LP)2, an Adaptive Algorithm for Information Extraction from Web-related Texts. In

Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-2001).

Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning 3, pg. 261-283.

Cohen, W.W., & Singer, Y. (1999). A Simple, Fast, and Effective Rule Learner. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence, 1999.

Eliassi-Rad, T., & Shavlik, J. (2001). A Theory-Refinement Approach to Information Extraction. In

Proceedings of the 18th International Conference on Machine Learning (ICML-2001).

Freitag, D. & Kushmerick, N. (2000). Boosted Wrapper Induction, American Association for Artificial

Intelligence 2000, pg. 577-583.

Kushmerick, N. (2000). Wrapper Induction: Efficiency and Expressiveness, Artificial Intelligence 2000,

pg. 118.

Liu, L., Pu, C., & Ilan, W. (2000). XWrap: An XML-enabled Wrapper Construction System for Web

Information Sources. In Proceedings of the International Conference on Data Engineering, 2000.

Margineantu, D. D., & Diettrich, T. G. (1997). Pruning adaptive boosting. In Machine Learning:

Proceedings of the Fourteenth International Conference, pp. 211-218.

National Library of Medicine. (2001). The MEDLINE database, 2001. http://www.ncbi.nlm.gov/Pubmed/.

Michalski, S. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2, 349-361.

Miller, G. (1995). Wordnet: A lexical database for English. Communications of the ACM 38(11):39-41

Muslea, I, Minton, S. & Knoblock, C. (1999). A Hierarchical Approach to Wrapper Induction.

Muslea, I. (1999). Extraction Patterns for Information Extraction: A Survey. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence, 1999.

Quinlan, J.R. (1990). Learning logical definitions from Relations. Machine Learning, 5:239-266, 1990.

Ray, S. & Craven, M. (2001). Representing Sentence Structure in Hidden Markov Models for Information

Extraction. In Proceedings of the 17th International Joint Conference on Artificial Intelligence

(IJCAI-2001).

Riloff, E. (1996). Automatically Generating Extraction Patterns from Untagged Text. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp. 1044-1049.

Shapire, R. E. (1999). A Brief Introduction to Boosting. In Proceedings of the 16th International Joint

Conference on Artificial Intelligence (IJCAI-1999).

Shinnou, H. (2001). Det ection of errors in training data by using a decision list and AdaBoost. In IJCAI-

2001 Workshop, "Text Learning: Beyond Supervision", pp.61-65.

Yarowsky, D. (1994). Decision Lists for Lexical Ambiguity Resolution: Application to Accent Restoration

in Spanish And French. In Proceedings of the ACL '94, pp. 77-95.

 INTERNAL DRAFT – NOT FOR PUBLICATION OR DISTRIBUTION
 Dave Kauchak, Joseph Smarr, Charles Elkan

 38

Yih, W-t. (1997). Template-based Information Extraction from Tree-structured HTML Documents.

Masters thesis, National Taiwan University.

 cc addr date abstract speaker loc. stime etime id comp. title protein location gene disease

BWI 50 50 50 500 500 500 500 500 500 500 500 500 500 500 500
SWI 5.1 1.3 1.0 51.8 139.4 75.6 72.1 25.0 15.2 46.9 132.1 333.1 235.0 357.0 280.1

Root-SWI 3.6 1.3 1.0 48.4 110.7 66.8 62.0 17.9 1.0 46.3 119.6 322.5 229.7 344.6 278.8

Table 2: Number of boosting iterations used BWI, SWI, and Root -SWI on the 15 data sets.

BWI Fixed-BWI Root-SWI Greedy-SWI
Data Set SWI-Ratio

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Latime-cc 0.013 0.996 1.000 0.998 1.000 0.985 0.993 1.000 0.975 0.986 1.000 0.948 0.973

Zagats-addr 0.011 1.000 0.937 0.967 1.000 0.549 0.703 1.000 0.549 0.703 1.000 0.575 0.724

QS-date 0.056 1.000 1.000 1.000 1.000 0.744 0.847 1.000 0.744 0.847 1.000 0.783 0.875

AbstractText 0.149 0.993 0.954 0.973 0.966 0.495 0.654 0.846 0.585 0.685 0.847 0.317 0.447

SA-speaker 0.246 0.791 0.592 0.677 0.887 0.446 0.586 0.777 0.457 0.565 0.904 0.342 0.494
SA-location 0.157 0.854 0.696 0.767 0.927 0.733 0.818 0.800 0.766 0.780 0.924 0.647 0.759
SA-stime 0.098 0.996 0.996 0.996 0.991 0.949 0.969 0.975 0.952 0.964 0.979 0.842 0.902

SA-etime 0.077 0.944 0.949 0.939 0.993 0.818 0.892 0.912 0.793 0.843 0.987 0.813 0.885

Jobs-id 0.068 1.000 1.000 1.000 1.000 0.956 0.978 1.000 0.956 0.978 0.996 0.829 0.902
Jobs-company 0.246 0.884 0.701 0.782 0.955 0.733 0.824 0.794 0.838 0.784 0.904 0.751 0.802

Jobs-title 0.381 0.596 0.432 0.501 0.661 0.479 0.547 0.480 0.658 0.546 0.660 0.477 0.549

YPD-protein 0.651 0.567 0.239 0.335 0.590 0.219 0.319 0.516 0.154 0.228 0.594 0.134 0.218
YPD-location 0.478 0.738 0.446 0.555 0.775 0.418 0.542 0.633 0.246 0.347 0.774 0.240 0.365

OMIM-gene 0.534 0.655 0.368 0.470 0.826 0.480 0.606 0.469 0.249 0.324 0.646 0.199 0.304
OMIM-disease 0.493 0.707 0.428 0.532 0.741 0.411 0.528 0.487 0.251 0.327 0.785 0.241 0.369

Table 1: SWI-Ratio and performance of the four IE methods examined on the 15 extraction tasks.

