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Abstract 

 

This thesis presents a context-, domain-, and language-independent 

method for classifying proper names into semantic categories.  The core 

observation is that many proper names contain character sequences that 

are distinctive of their category.  There is, in effect, a surprisingly strong 

sound-symbolic relationship between names and the things they describe, 

which can be uncovered with machine learning methods.  While previous 

work has exploited a portion of this form-meaning relationship (modeling 

suffixes, patterns of capitalization or punctuation, etc.), this thesis presents 

a generalized approach in which character-level subsequences are the 

basic unit of evidence and every piece of a proper noun can be used as 

input.  The result is a highly general, robust, and accurate classifier that 

can categorize proper names without surrounding context and 

straightforwardly handle previously unseen words.  We describe a 

probabilistic generative model based on n-gram character sequences and 

present experiments classifying a wide variety of names that include 

companies, people, places, pharmaceutical drugs, movie titles, proteins, 

car models, musical artists, and diseases.  We show how this same model 

can be used to generate new proper names that mimic a given category.  

We then generalize this model to perform segmentation alongside 

classification, resulting in a named-entity recognizer that achieves 

competitive results in both English and German.  Finally, we discuss the 

relationship of this work to sound symbolism, language identification, and 

professional brand-name creation, investigating the origins of the self-

descriptive naming conventions that our model is able to capture. 
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Chapter 1:  

The challenge of unknown words 

A major challenge in building robust, wide-coverage natural language processing 

(NLP) systems is coping with the unrelenting amount of unknown words.  Most methods 

rely on observing repeated occurrences of data in order to measure correlations between 

relevant pieces of information (either tacitly for building rules by hand or explicitly for 

machine learning approaches).  For example, statistical part of speech taggers usually 

predict tags by remembering the most common part of speech for each word observed in 

a large, manually labeled corpus of word-tag pairs.  When an unknown word is 

encountered, no such information is available, and the system is forced to guess 

(Weischedel et al. 1993).  Thus, unknown words represent a significant source of error 

for many NLP systems (Bazzi & Glass 2000). 

1.1. Quantifying unknown words 

To a certain extent, the problem of unknown words can be mitigated by 

accumulating larger and larger quantities of text (Armstrong et al. 1999, Banko & Brill 

2001).   However, it has been widely observed that word frequency is a heavy-tailed 

distribution, meaning that an appreciable amount of the probability mass is in the tail of 

the distribution, and thus new words will continue to show up with considerable 

frequency even after collecting very large corpora (Chitashvili 1993).  The famous Zipf’s 

law states that the frequency of a word (the number of times it occurs in a given amount 

of text) is inversely proportional to its rank (how common it is) (Zipf 1949).  Thus, word 

frequency follows a power law, a function that is notorious for taking a long time to 

decay.   

Empirically, as the size of a corpus increases, the occurrence of previously unseen 

words grows at approximately the square-root of the total number of word tokens seen.1  

                                                 
1 A token of word is a single occurrence in a document, whereas its type refers to the unique word itself.  
Thus, for example, the single word type the has numerous tokens in normal text, whereas a rare word type 
like antepenultimate may have only one (or no) tokens even in a large corpus.  In the results presented in 
this thesis, word types are determined by string identity.  For example, the and The are considered different 
types because their spelling differs in case.  Similarly, look and looked are different types. 
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Figure 1 presents a replication of this well-known fact (e.g., Ara’ujo et al. 1997) on 

sections 0 through 20 of the Wall Street Journal corpus, obtained from the Penn Treebank 

(Marcus et al. 1993).  Even after seeing a million words of text, the occurrence of new 

words has not yet leveled off.  A major cause of the continual introduction of new words 

is the inherent non-stationarity of language.  People are constantly talking about new 

events, new concepts, and new people, so two documents taken from different times—

even relatively close together—will reflect different vocabularies and distributions of 

word frequency. 
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Figure 1. Growth of word types (new words) vs. word tokens (all words).  

As more tokens of text are encountered (x-axis), the number of unique word types 
(y-axis) empirically grows at roughly the square-root (comparison uses k=45). 

 

The problem of unknown words is particularly acute when dealing with proper 

nouns or names.  Proper nouns include people’s names, as well as the names of 

companies, products and places.  They represent the most open and productive class of 

words in English—new company and product names are constantly being created, and 

they rank at or near the top of all syntactic categories in terms of sheer number of types 

and rate of growth.   
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Figure 2 shows the relative breakdown of unknown words by part of speech.  

These numbers were obtained by counting the number of words in sections 22 through 24 

of the Wall Street Journal corpus that were never seen in sections 0 through 20.  Proper 

nouns account for over 40% of the unknown tokens encountered and over 30% of the 

types.  The disparity between tokens and types is due to the “burstiness” of names: once a 

new name is introduced, it is commonly referred to many times.    
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Figure 2. Unknown words by part of speech.   

All words in sections 0-20 of WSJ were considered “known” and only words 
occurring for the first time in sections 22-24 were counted as “unknown”. 

Distinction in number (e.g., NN/NNS) and inflection (e.g., VBZ/VBG) was collapsed. 

 

Not only are unknown proper nouns numerous by quantity; they are also the most 

productive word class.  In other words, as a syntactic class, the rate of occurrence of new 

proper nouns takes the longest time to decay.  Figure 3 shows the proportion of words in 

each syntactic class that have already been seen.  As more text is read, all classes 

continue to “fill up” their inventory of words, but proper nouns lag furthest behind.  Even 

after reading a million words of text, the chance that the next proper noun encountered 

will be previously unseen is over 10%. 
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Figure 3. Saturation rates by part of speech.  

The x-axis shows the progressive buildup of corpus in 100,000 word chunks, and at 
each point the fraction of unknown words (words encountered for the first time in 

the current chunk) are computed for each major part of speech. 

 

1.2. The importance of recognizing proper noun phrases 

While proper nouns are the word class most riddled by unknown word problems, 

they are also one of the most important classes for NLP tasks.  Recognizing and 

classifying proper noun phrases (PNPs) in text is a key challenge in many subfields of 

NLP, including shallow parsing (also called chunking, e.g., Ramshaw & Marucs 1995), 

named-entity recognition (e.g., Mikheev et al. 1999), and information extraction (e.g., 

Freitag & McCallum 2000).  The two primary subtasks are segmenting PNPs (marking 

their boundaries within continuous text) and classifying them into a semantic class 

(distinguishing different types of names).  For example, consider what is required to 

correctly annotate the two sentences: 
 

The [ORG Microsoft] Quarterly Report, said [PER Huy Nguyen], showed earnings growth.   

In [LOC Japan] [ORG Sony Electronics] continues to outperform the broad market. 
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Among other things, the system needs to recognize that “Microsoft” by itself is an 

organization (even though it is inside the capitalized block “The Microsoft Quarterly 

Report”, it needs to recognize that “Huy Nguyen” is a person’s name (even though it is 

an uncommon name in English), and it must recognize that “Japan” and “Sony” are two 

adjacent names (rather than one big name). 

A great deal of research in named-entity recognition took place as part of the 

annual U.S. government-sponsored Message Understanding Conferences (MUC), which 

required identifying PNPs in text and classifying them as company names, place names, 

and people names (Mikheev et al. 1998, Collins et al. 1999).  Similarly, several studies 

have tried to identify novel terms in medical abstracts (e.g., Campbell et al. 1999, 

Bodenreider et al. 2000).  Recognizing proper names is also of ancillary importance in 

tasks such as part of speech tagging, parsing, and information retrieval, which depend on 

having an informative lexicon and thus need a way of productively extending it when 

dealing with unknown words.  The persistence of focus placed on these tasks is largely 

due to the challenge of robustly identifying PNPs in spite of the high occurrence of 

unknown words. 

1.3. Coping with unknown words 

When faced with previously unknown words, there are two sources of information 

to fall back on—the surrounding context in which the word occurs, and/or some 

distinguishing content feature of the word itself.  Contextual cues are typically syntactic 

patterns that prefer a particular class of PNP.  For example, in a sentence like “NP_X was 

appointed President of NP_Y”, NP_X is most likely a person and NP_Y is most likely a 

company.  Similarly, a sentence like “NP_Z was approved by the FDA” might indicate 

that NP_Z is a drug.  The two major approaches for generating contextual cues have been 

hand-built, domain-specific rules based on patterns in the syntactic context (Appelt et al. 

1995, Mikheev et al. 1998, Bodenreider et al. 2000), and machine-learning approaches 

that take labeled data and build up surrounding patterns (Soderland 1995, Riloff 1996, 

Muslea et al. 1999, Freitag & Kushmerick 2000).   

A complementary strategy for using context to classify PNPs is to use internal 

features of the PNP itself.  Traditional approaches to PNP classification rely primarily on 
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large, manually constructed lists of known names or “gazetteers” (Wacholder et al. 1997, 

Charoenpornsawat et al. 1998, Mikheev et al. 1998, Bodenreider et al. 2000), and/or 

gross word-level features such as capitalization, punctuation, or presence of numbers and 

other “special characters” (Bikel et al. 1997, Wacholder et al. 1997, Baluja et al. 1999, 

Bikel et al. 1999, Bodenreider et al. 2000).  Many of these systems use some form of 

machine learning in conjunction with these features. These methods achieve relatively 

high levels of performance, but suffer from the problem that building lists of words or 

heuristic rules is slow, expensive, and domain specific.  These shortcomings have been 

widely acknowledged (e.g., Wacholder et al. 1997, Mihkeev et al. 1999), yet few 

alternative strategies for unknown PNP classification have been proposed. 

1.4. Can names be classified without context? 

It is not immediately obvious through introspection what features humans use to 

classify previously unseen names.  In particular, it is unclear whether context or content 

plays a more important role.  It is common to point to names like Washington that can 

refer either to a person, place, or organization as a demonstration that classifying names 

without context is hopeless.  Even if one considers potentially informative suffix patterns 

like –ville for place names (e.g., Knoxville, Yountville), there are obvious counter 

examples, such as the person’s name Neville.  On the other hand, in many cases names 

can be quite descriptive independent of any context.  For example, company names often 

end in Inc. or Corp.  Thus, even if the main part of a company’s name is an unknown 

word, the name as a whole may be quite identifiable (e.g., Plaxo, Inc.).  Single-word 

names can also be quite discernable at times.  For example, pharmaceutical drugs such as 

Novo-Doxylin and Cotramoxizole are strongly marked and easily recognizable.  In these 

cases, since the word itself is unknown and it occurs without any surrounding context, the 

only pieces of evidence available for classification are word-internal features, such as 

common character sequences and word length. 

The central thesis of this research is that the internal composition of PNPs 

provides surprisingly strong evidence for classification, independent of any context.  

Despite the concern over words like Washington or character sequences like –ville, this 

work demonstrates that in many cases, character-level features provide pervasive and 
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reliable cues for categorizing names into semantic classes, even when some or all of the 

words in the name have never been seen before.  In general, identifying instances of 

proper names in a pre-defined list (whether manually constructed or learned) is relatively 

easy.  The difficulty comes when trying to segment and classify previously unseen 

names.  Although unknown word models of varying sophistication have been developed, 

in most cases they are an add-on to a core system that is focused elsewhere, and the set of 

features proposed to distinguish different types of names has been largely ad hoc and 

language dependent.  This thesis treats proper handling of unknown words as a central 

challenge in NLP, and strives for a more general and principled solution to the problem 

than is commonly found. 

With this goal in mind, the remainder of the thesis is organized as follows: 

Chapter 2 describes a statistical model that can be used to classify PNPs after being 

trained on labeled examples.  Chapter 3 presents a number of classification experiments 

with this model that demonste the power and flexibility of character-level features.  

Chapter 4 analyzes these results in more detail, with particular attention to the types of 

errors the model makes and the contribution of different model components to overall 

performance.  Chapter 5 builds on the PNP classification model to include segmentation 

along with classification, and presents results using this combined model for multilingual 

named-entity recognition.  Chapter 6 speculates on the linguistic and cultural forces that 

give rise to the apparently systematic naming conventions that these models exploit.  

Finally, Chapter 7 concludes by summarizing the findings of this research and identifying 

additional contributions that could be made in the future. 
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Chapter 2:  

A probabilistic model of proper noun phrases 

Driven by the observation that unknown names can often be classified without 

surrounding context, this chapter formalizes the task of proper noun phrase (PNP) 

classification and presents a probabilistic generative model that can be trained on 

manually classified PNPs and used to classify novel cases.  The majority of the 

exposition and experiments discussed below deal with five categories of PNPs: drug 

names, company names, movie titles, place names, and people’s names.  Later we present 

classification experiments with a number of other categories to demonstrate the 

generality of the model and to investigate which types of names are easier and harder to 

categorize. 

2.1. Formalization of problem 

In this section we formalize the task and procedure of PNP classification and its 

evaluation.  The work presented here is largely based on (Smarr & Manning 2002). 

2.1.1. Performance Task 

The performance task is to take a string representing a Proper Noun Phrase (e.g., 

Aureomycin or Keyspan Corp) and classify it into one of a predefined set of categories 

(e.g., drug name or company name).  A Proper Noun Phrase is a sequence of one or 

more words that represents the name of a person, place, or thing.  As mentioned above, 

our goal is to assess the ability to classify an already segmented PNP independent of 

context.  

2.1.2. Training 

We use a standard supervised learning paradigm.   A training example consists of 

a PNP labeled with its semantic category.  A portion of the training examples (20% in the 

reported results) are held out for learning various parameters described in the next 

section, and the remainder are counted to derive various statistics.  After cross-validation 

parameters have been set, the held-out data is also trained on before testing. 
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2.1.3. Testing 

After training is completed, the classifier is presented with another list of PNPs, 

none of which appeared in the training data.  Some PNPs are inherently ambiguous and 

thus could be judged as correctly belonging to multiple classes (e.g., Washington is both 

a place and a name).  However, we follow the stringent evaluation standard of only 

accepting the category from which the example was originally taken, regardless of its 

ambiguity. 

2.1.4. Evaluation 

Each result presented is the average of ten separate train/test runs.  In each case, a 

randomly selected 90% of the supervised data is used for training, and the remaining 10% 

is used for testing.  The evaluation metric we use is raw classification accuracy, defined 

as the number of test examples for which the correct category was provided by the 

classifier, divided by the total number of test examples presented.   

2.2. Model used for classification 

Classification of PNPs is performed using a probabilistic generative model for 

each category.  The predicted category of a new PNP is determined by the following 

formula: 

 
Predicted-Category(pnp) = argmaxc P(c|pnp)  = argmaxc P(c)α×P(pnp|c) 

 
where P(c) is estimated empirically from the training data, and α is a prior-boost, set with 

a line search on held-out data.2  P(pnp|c) is a model of each category of PNPs that is 

based on the number and length of words used and the composition of each word. 

For an intuition about the empirical value of character sequences and word-length 

information for PNP classification, consider the three names: 

Cotrimoxazole 

Wethersfield 

Alien Fury: Coundown to Invasion 
                                                 
2 A “line search” simply means testing several parameter values in a given range and picking the one that 
resulted in the best score.  In practice, setting a prior boost usually made little difference, as it was often set 
to 1.0 during cross validation. 
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The first name is clearly a drug name, and this is strongly represented in the character 

sequence.  For example, the trigram oxa appears in 18 drug names in the training data, 

and no names of any other category.  Thus the presence of this substring is strongly 

correlated with the category drug names.  Similarly, the substring field occurs in 68 place 

names, 14 people’s names, eight company names, and six movie titles.  Thus while it is 

not as strong a cue as oxa, it is still clearly informative.  Finally, a colon character occurs 

in 708 movie titles, six drug names, and nothing else.  Thus, single characters along with 

short and long character sequences together provide a multitude of category predictors. 

Another marked difference between PNP categories is the length and number of 

words used.  Figure 4 shows the empirical distribution of characters per word (left) and 

words per PNP (right) for several categories of PNPs.  For example, a PNP with four 

words is very unlikely to be a place name, but it may well be a movie title.  Words with 

ten or more characters are likely to be part of drug or place names than company names 

or movie titles.  Like character sequences, most of these cues are not100% effective on 

their own, but the accumulation of evidence from many such sources produces an overall 

ranking of likely categories that is quite reliable. 
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Figure 4. Word-length and number-of-word distributions by PNP category.  

The left graph shows the normalized histogram of word lengths for each word in 
each proper noun phrase (per category).  For instance, note the bimodal distribution 

in drug-name words, reflecting the presence of long (main) words (e.g., 
Acetaminophen) and short (suffix) words (e.g., DM).   

The right graph shows the raw histogram of number of words per complete proper 
noun phrase (per category).  For instance, most place names are a single word (e.g., 
California) while most movie titles are many words long (e.g., Natural Born Killers).  
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Formally, P(pnp|c) is a generative model of the form 

 
P(pnp|c) = Pn-gram(word-lengths(pnp)) × Πword i∈pnp P(wi|word-length(wi)) 
P(wi|len) = λlen× Pn-gram(wi|len)k/len + (1-λlen) × Pword(wi|len) 
 

where each term is implicitly conditioned on the category.  The probability for each word 

is computed as the weighted average of the character n-gram estimate and the known-

word estimate.  Interpolation weights are learned for each distinct word length using a 

line search on held-out data.3  P(w|len) is estimated empirically as the number of times 

word w was seen in the training data divided by the total number of words of length len 

characters seen. 

The function word-lengths(pnp) returns a list of integers, representing the 

number of characters in each word of the PNP.  The list is prepended with (n–1) 

boundary symbols for conditioning, and a final “zero-length word” indicating the end of 

the PNP is also added so that the termination of PNPs becomes a statistically observable 

event.  For example, word-lengths(Curtis E. Lemay) = [6, 2, 5, 0].   

Two n-gram (Markov) models are used, one for word lengths and one for 

characters.  We set n = 4 for lengths and n = 6 for characters, and we used deleted 

interpolation to estimate probabilities, using the following recursive function: 

 

P0-gram(symbol|history) = uniform-distribution 
Pn-gram(s|h) =  λC(h)Pempirical(s|h) + (1- λC(h))P(n-1)-gram(s|h) 
 

Thus, the 2-gram estimate is a mix of the empirical 2-gram distribution and the 

combined 1/0-gram distribution, the 3-gram estimate is a mix of the empirical 3-gram and 

the combined 2/1/0-gram, and so forth.  Interpolation parameters λC(h) are estimated via 

expectation maximization (EM) on held-out data, and are learned separately based on the 

binned count of the conditioning context C(h).  We utilized six bins in our experiments: 

{0, ≤5, ≤50, ≤500, ≤5000, >5000}, although we found only minor deviation in our results 

by changing the specific bins used.   
                                                 
3If a novel word length is seen during testing, the interpolation parameter is automatically set to 1 for the 
character n-gram and 0 for the word model, since no words of that length have been seen before.   

11 



The character n-gram estimate for the entire word is conditioned on word length 

(to maintain independence with the word-length model) by dividing by the fraction of 

words in the training data with the given number of characters.  The first word in the PNP 

is prepended with n – 1 spaces (starter symbols, with the effect that the 2-gram and lower 

estimates treat the first word identically to a middle word) and the subsequent words are 

prepended with the preceding n – 1 chars in the PNP (including the preceding space).  

Each n-gram word estimate is terminated after reaching the following space character.  A 

unique termination symbol is appended after the last word in each PNP.  The probability 

of each word is normalized for length by taking the (k/length)th root, which is discussed 

in more detail in Section 4.3.2. 

As a concrete example of how the model works, consider the classification of the 

name “Alec Baldwin” (an actor).  Figure 5 shows the cumulative score (in log 

probability) of this PNP for each category as evidence builds up.  At first there is simply 

the prior probability (overall rate) of each category.  Next the word-length sequence is 

considered in three steps (4-7-0), leaving person on top but only slightly.  Next each 

word is scored based on its character sequences.  At the end, person is a clear winner.  

Note that place follows relatively closely because the word Baldwin shows up once as a 

place name (in Brightwell Baldwin). 
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Figure 5. Cumulative classification scores for Alec Baldwin. 

The stages of classification (x-axis) are prior probability, word-length sequences, 
and character-level sequences for each word. The running model score (cumulative 
log probability) for each category is shown along the y-axis.  Higher values indicate 

stronger category resemblance. 
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Figure 6 shows a blow up of the last computation in Figure 5—the character-by-

character scoring of the word Baldwin.  Note that at the beginning of the word, the 

conditioning context includes the end of the previous word.  This captures word-level 

collocations in addition to modeling word-internal regularities.  Since Baldwin has been 

seen as both a person and place name but nothing else, the scores in those categories are 

much higher than in the other categories.  Length-normalization has little effect here, but 

mixing in the word score at the end gives person a little additional bump, since the entire 

word was seen before in addition to having seen the substrings.  
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Figure 6. Cumulative classification scores for Baldwin (part of calculation above). 

This is a blowup of the last column of Figure 5, showing the cumulative model score 
(log prob) for each category while a single word is processed one character at a time. 

The final two columns are normalizing to word-length (so short words and long 
words are weighted equally) and boosting the score for character sequences that 

happen to be a previously observed word.  
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Chapter 3:  

Experiments in classifying proper noun phrases 

This chapter utilizes the PNP model in Chapter 2 to perform a number of 

classification tasks.  The primary results (and subsequent analysis in Chapter 4) are 

obtained on the five PNP categories described in Section 3.1.  We subsequently present 

classification results on a wide variety of other PNPs in an attempt to showcase the 

versatility of our method and to gain a more comprehensive impression of its strengths 

and weaknesses. 

3.1. Data sets used in experiments 

We assembled five categories of PNPs for our primary set of experiments, each 

containing several thousand examples (see the appendix for complete information on 

counts and sources).  The categories were pharmaceutical drugs (drug), companies listed 

on the New York Stock Exchange (nyse), movies and TV shows produced in 2000 

(movie), cities and countries from around the world (place), and famous people’s names 

(person).  These collections were selected because they represented major sources of 

unknown PNPs of interest, and because of their diverse composition.   

These data sets were intentionally left in the rather “noisy” state in which they 

were found, to breed robustness, and to accurately measure performance on “real world” 

examples.  There is inconsistent use of capitalization, punctuation, and canonical 

formatting.  Many of the PNPs within a given category come from different languages 

(e.g., foreign films).  Some categories contain a number of frequently occurring words 

(e.g., Inc. and Corporation in nyse); others do not.4   

It has been pointed out in the MUC competitions that PNPs often appear 

abbreviated in text, especially when mentioned earlier in full form.  In such cases, not all 

of the information contained in these data sets would be available.  Previous work in 

named entity extraction has addressed this problem by first trying to find full PNPs, then 

looking for their abbreviated versions (Mikheev et al. 1998).  However, we note that the 
                                                 
4 One thing we did manually correct was names that appear with their words in a non-standard order used 
for indexing, such as movie titles like Ghost, The and names like Adams, John Quincy.  Each of these cases 
was restored to its “natural” word order. 
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current system can also recognize single-word unknown PNPs directly.  Over 30% of the 

total PNPs used in these data sets are single-word PNPs, and in some categories, the 

number is much higher (e.g., 84% of place names are single words).  Thus the ability of 

the classifier to handle both the presence and absence of common peripheral words in 

PNPs is being directly measured in our results. 

3.2. Classifying drugs, companies, movies, places, and people 

To assess the accuracy of our classifier, we ran three types of tests: pairwise tests 

of a single category against another single category, 1-rest tests of a single category 

against the union of the other categories, and n-way tests, where all categories are against 

each other.  The results of these tests are presented in Figure 7, sorted by classification 

accuracy and shown with standard deviations (computed from the ten separate train/test 

runs carried out for each result). 
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drug-nyse-place-person
movie-person

place-drug_nyse_movie_person
movie-drug_nyse_place_person
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Figure 7. Classification accuracy on pairwise (white), 1-rest (gray), and n-way (black) tests. 

Results are sorted by classification accuracy. The order reflects both the difficulty of 
the classification task (number of categories involved) and the difficulty of the input 

(which classes are being compared). 
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As expected, the n-way test was the most difficult.  The ranking of results also 

reflects the inherent difficulty of the different categories.  Overall, company names were 

most easily recognized, followed by drug names, person names, and place names, with 

movie titles proving the most difficult.  These results are discussed further detail in 

Chapter 4.  

3.3. Generalizing to new categories 

The fact that our classification technique is domain independent means that we 

should be able to quickly retarget it for categories that have not previously been studied.  

We illustrate the flexibility of our approach here, by applying the classifier to a novel 

domain, without making any changes to the classifier design. 

Inspired by the game “Cheese or Disease?”, featured on the MTV show Idiot 

Savants (see Holman 1997), as our novel categories we chose discriminating names of 

cheeses and diseases.  The basic idea is that there are many odd-sounding cheese and 

disease names, some of which are quite difficult to tell apart (e.g., Yaws, Cerney, Orla, 

Hamartoma)5.  This seemed like an ideal test for the PNP classifier, since many of the 

names are single unknown words. 

Finding existing lists of cheeses and diseases on the web proved easy (see 

Appendix for details), and since the classifier is domain independent, we were able to 

start training immediately.  With ten minutes of work, we had a classifier that achieved 

93.5% classification accuracy.  Although recognizing references to cheese may not be 

high on the Defense Department’s priority list, we feel that the ability to quickly reach 

high levels of proficiency in novel domains is a key benefit of our approach. 

In the remaining sections of this chapter, we present further experiments 

classifying different categories of PNPs.  We conclude with a preliminary evaluation of 

human accuracy at PNP classification as a benchmark for success.  The goals in 

presenting these additional experiments are to investigate the adaptability of the 

classification method and to identity any systematic causes of errors. 

                                                 
5 Cerney and Orla are cheeses; Yaws and Hamartoma are diseases. 
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3.4. Distinguishing biological names (genes, proteins, etc.) 

Identifying and classifying PNPs in biomedical texts has become an increasingly 

important research topic in bioinformatics (Kazama et al. 2002).  Names for proteins, 

genes, viruses, cells, and so on continue to appear at a frenetic pace, and there are no 

widely followed standards for terminology.  Names are often quite opaque. e.g., CD28 

(protein) or peri-kappa B site (DNA), and they are also ambiguous, e.g., E1A can refer 

both to a gene and its protein product.  It is therefore widely believed that biological 

PNPs are harder to identity and classify than traditional PNPs like the ones studied so far 

(Nobata et al. 2000).  A major cause of this difficulty is that standard word-internal 

features like capitalization or presence of numbers are far less discriminating in 

biomedical text (where such “odd-looking” names are common to many categories) than 

in standard news text.  Since switching from gross unknown word features to character-

level features was successful in standard PNP classification tasks, there is reason to 

believe it might also provide benefit in the biomedical domain. 

To investigate the ability of the PNP classifier to distinguish between different 

types biological names, we used the GENIA corpus, version 3.01 (Ohta et al. 2002).  The 

GENIA corpus is one of the largest publicly available collections of annotated 

MEDLINE abstracts (2000 documents containing roughly 50,000 annotated name 

tokens), and it distinguishes 24 different biomedical name types, including peptide, 

protein, nucleotide, DNA, RNA, carbohydrate, lipid, virus, tissue, and so on.  Much of the 

earlier work on biomedical named entity recognition (NER) was done on much smaller 

data sets (around 100 documents, e.g., Nobata et al. 1999, Collier et al. 2000) and this is 

seen as a contributing factor to the lack of high performance systems to date.   

We trained our PNP classifier on all the annotated GENIA names using the 

experimental method described in Chapter 2.  Average accuracy on the 24-way 

classification task was around 74%.  A naïve majority-class baseline (which would call 

everything a protein) achieves 25%.   

There are no directly comparable numbers in the literature for 24-way GENIA 

PNP classification, but we can get a rough comparison by considering some closely 

related work.  Nobata et al. 1999 report PNP classification results on four GENIA 

categories (source, protein, DNA, and RNA) and their best system achieves 87.7-90.1% 
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accuracy.  However, this is a much simpler task, because of the small number of classes.6  

Most results presented in the literature on biomedical NER combine the identification of 

names in free text (i.e. segmentation) and their subsequent classification (we consider the 

complete NER task in Chapter 5).  When Nobata et al. add a segmentation algorithm 

(rather than classifying perfectly pre-segmented PNPs, their best results drop to 66.24%, 

a relative loss of 26% accuracy.  Kazama et al. (2002) present results on all 24 GENIA 

categories, but only for the combined segmentation/classification task.  Their best score is 

50.23%.7  If we assume that segmentation accounts for roughly 26% of the error (as it did 

for Nobata et al.), we can predict that they would obtain a 24-way classification accuracy 

of 63%.  This is at best an informed guess, since the two systems use different 

segmentation methods.  Nevertheless, it shows that 74% accuracy for our PNP classifier 

is reasonably state-of-the-art performance, and suggests that character-level features may 

be quite beneficial for distinguishing biomedical names. 

3.5. Distinguishing bands and artists 

There has been great consumer interest in recent years in digitizing one’s entire 

CD collection and keeping all the music on a computer.  The advantages are instant 

playback (no shuffling around for physical CDs) and complete flexibility in what songs 

are played in what order.  However, as the quantity of digital music on computers 

continues to grow, it becomes increasingly important to organize and index it so people 

can quickly find what they are seeking. 

Consider the task of alphabetically indexing all of the musical artists in your CD 

collection.  It is a common practice to index band names by their first word (e.g., Pink 

Floyd goes under P), but to index artist names by their last name (e.g., Eric Clapton goes 

under C).  This creates a challenge for an automatic indexing system: band names must 

be distinguished from artist names, since they are indexed differently.  In some cases, this 

is relatively easy—for example, band names with the in their name (e.g., The White 

Stripes, Huey Lewis and the News, etc.) are easily distinguished.  However in many cases 

                                                 
6 While we did not have access to the source names, a 3-way classification between protein, DNA, and 
RNA using the PNP classifier achieves 87.1%, apparently a comparable result. 
7 Interestingly, their best result comes from using a form of substring features! 
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one simply has a two-word name and it is not obvious what to do with it.  For example, 

Crystal Method is a band, but Crystal Lewis is an artist.   

We investigated whether the PNP classifier could be used to distinguish band 

names from artist names.  Luckily, the Google directory has an index of about 4500 

bands (see Appendix for details) that have been correctly indexed (e.g., Tori Amos is 

listed as Amos, Tori).  This makes it trivial to separate band and artist names and provides 

ample training data.  For the experiments, artist names were reversed back to their 

original order (e.g., Tori Amos) and band names with and or the in their titles were set 

aside as too easy, leaving around 4000 ambiguous names that split roughly equally into 

band names and artist names.   

We trained and tested the PNP classifier using the same experimental methods as 

above.  Average classification accuracy was 90%.  Most of the errors made were on 

names that are indeed quite ambiguous, and some a bit dubious.  For example, the three 

“band names” that were misclassified as artist names with the highest confidence are Luis 

Miguel, Dorian James, and Lynrd Skynrd, all of which look like artist names (and we 

believe Luis Miguel was incorrectly labeled).  If band names with and or the in their titles 

are included (as would be the case in a production system), accuracy increases to 95%. 

An obvious idea for further improving accuracy is to add the person names from 

the previous set of experiments as additional training data.  We added roughly 6000 extra 

“artist” names to each training fold and reran the experiments (ignoring the prior, which 

was now skewed).  The performance gain was surprisingly negligible (1-2% on average).  

An error analysis suggests that most of the artist names that the system failed to 

recognize had uncommon names that were not found in the additional list of people’s 

names.  Thus the extra data did not tell the system much that it did not already know  

In addition to the speed with which a reliable “smart indexing” system could be 

built with the PNP classifier, another benefit of this approach is that each classification 

decision comes with an attached probability that can be used as a confidence estimate.  

Depending on the confidence of the decision, different actions can be taken.  For 

example, names that are highly ambiguous can be indexed twice, once normally and once 

reversed (e.g., index both Luis Miguel and Miguel, Luis).  Assuming that the cost of 

indexing a name twice (where one instance is incorrect) is less than the cost of indexing it 
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once in the wrong place (where it can not be found), this is a reasonable strategy to 

pursue. 

3.6. Distinguishing car models and computer models 

Modern marketing has produced a plethora of synthetic product names—brand 

names made from combinations of made-up (or rare) words and numbers.  Two product 

categories in which this can be seen clearly are car models (e.g., Boxster, GS 400, MR2 

Spyder, Passat, XK8, etc.) and computer models (e.g., Aptiva, Deskpro EN, Presario 

7588, Z1, Vaio, etc.).  To car and computer aficionados, these names all sound distinct 

and meaningful (XK8 is a Jaguar sports car, Vaio is a Sony laptop, etc.) but to an 

inexperienced observer, they appear qualitatively quite similar.  For example, Presario (a 

Compaq desktop PC) has a rather car-like sound, similar perhaps to Prius or Paseo.  

Similarly, many brand names are just number and letter codes (especially luxury cars), 

e.g., S500 (Mercedes), 750i (BMW), or V3100 (Toshiba desktop).  Note however, that 

these codes are often internally consistent at the character level (e.g., there are many “S-

class” Mercedes models, all with model numbers of the form S###).  An added challenge 

is that the number of car and computer brand names, while certainly not insignificant, is 

considerably less than the other categories investigated (we collected roughly 700 car 

models and 150 computer models, compared to 1-10 thousand examples each of drugs, 

companies, locations, etc.).  Thus it is an interesting empirical question whether our PNP 

classifier can distinguish between car and computer models given their apparent 

similarity and the lack of abundant training data. 

Using the same train/test methodology above, our PNP classifier achieved an 

impressive accuracy of 98.1%, typically missing around 4 examples per 212-example test 

set, evenly split between classes.  Most errors were due to misleading character 

sequences seen in the opposite class during training.  For example, in one fold OptiPlex 

GX150 (Dell desktop) was mistaken for a car model, because of the Optima and GX 470 

car models seen during training.  Similarly, the computer model Concerto III was 

sometimes mistaken for a car because of car models like the Jetta III, Golf III, and 

Bronco II.  Nevertheless, these cases were the clear exception, and the overall 

performance of the PNP classifier was on par with most Silicon Valley executives.  
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3.7. Comparison to human-level performance 

In order to put the performance of our classifier in perspective, we tried to 

ascertain how good people are at this task.  To measure this, we created an interactive 

version of the classifier in which examples from the pairwise (1-1) trials were presented 

one at a time and human subjects labeled the categories (we chose the 1-1 trials because 

they seemed the easiest and least confusing).  The test consisted of six trials (one for each 

pair of drug, company, movie, and place names), each with 100 examples.  The computer 

of course did over 1000 examples per trial, but humans have limited patience.  We ran 

three subjects on each of the six trials, and recorded individual and average performance. 

 
1-1 Trial Avg. Human Accuracy Computer Accuracy Difference (C – H) 

Drug-NYSE 97.67% 98.93% +1.26% 
Drug-Movie 93.00% 95.77% +2.77% 
Drug-Place 87.00% 95.24% +8.24% 

NYSE-Movie 97.00% 97.76% +0.76% 
NYSE-Place 93.33% 98.64% +5.31% 
Movie-Place 93.67% 89.94% -3.73% 

Average 93.61% 96.05% +2.44% 

Table 1. Human and computer performance at pairwise PNP classification. 

Human results presented are the average of three subjects’ performance on 
pairwise tests with 100 names per test. Computer results are taken from Figure 7. 

 
While one should always be somewhat skeptical of an N=3 survey, there seems to 

be a clear trend in human performance, and in fact the results across subjects were very 

consistent.  It is humbling to realize that in average performance, the computer is winning 

against Stanford students by 2.44%, which at this level of performance means that it is 

making roughly 40% fewer errors (though the set of human and computer errors are not 

necessarily the same).  The difficulty of the different trials also seems to show through 

for both humans and the computer.  The two notably unequal scores are drug-place, 

where the computer dominated and movie-place, where people won out decisively.  

Subjectively, drug-place was hard for people because there were lots of weird-looking 

and confusing one-word place and drug names.  In contrast, movie-place was a trial 

where “higher-level semantic information” like what types of names tend to occur in 

movies vs. places seemed to help a lot.  In conclusion, we feel it is fair to claim that our 

classifier performs at or near the human level of competence. 
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Chapter 4:  

Analysis of experimental results 

In this chapter, we account for the experimental results presented in Chapter 3, 

analyze the contribution of each model component to overall performance, and examine 

the various parameters learned during cross validation.  This discussion is concerned 

primarily with the main five categories described in Section 3.1. 

4.1. Sources of erroneous classification 

Figure 8 shows the confusion matrix for the five-way classification task.  The area 

of each circle is proportional to the number of examples in that cell.  Movies, places, and 

people are most often confused for one another, and drugs are often misclassified as 

places (since they both contain many odd-looking one-word names). As an indication of 

the difficulty of dealing with movie titles, when the n-way tests are rerun as a four-way 

test without movie titles, average classification accuracy jumps from 88.1% to 93.2%.  

Three-way classification between companies, places, and people (similar to the 

ENAMEX classification task in MUC) is performed with an average accuracy of 94.6%. 
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The ease of identifying company names is largely attributable to the plethora of 

common words available, such as International, Capital, Inc., and Corporation.  The 

difficulty of place names and movie titles is partly due to the fact that they contain words 

from many different languages (and thus the learned estimates blur together what should 

really be separate distributions).  Movie titles are also the most inherently ambiguous, 

since they are often named after people (e.g., John Henry) or places (e.g., Nuremberg), 

and often contain words normally associated with another category (e.g., Prozac Nation 

and Love, Inc.).  Mikheev et al. (1998) report instances of similar ambiguity as a cause of 

error in their work.   

A similar source of errors stems from words (and common intra-word letter 

sequences) that appear in one category and drive classification in other categories when 

there is insufficient information to the contrary.  For example, in one run Delaware was 

erroneously classified as a company, because it was never seen as a place name, but it 

was seen in several company names (such as GTE Delaware LP).  The same 

phenomenon was the major cause of errors in the car-computer experiment presented in 

Section 3.6.  Cases like these appear to be an inherent limitation of our approach.  

However we are being unusually restrictive by forcing our test set to be completely 

disjoint with our training set.  In a real application, common place names like Delaware 

would have been trained on and would be readily recognizable as place names.  

The reader is challenged to classify five PNPs—R & C, Randall & Hopkirk, 

Steeple Aston, Nandanar, and Gerdau— in order to gain an appreciation for the potential 

difficulty of this task (see Appendix for solutions):  

4.2. Contribution of model features 

To assess the relative contribution of the three major components of our model 

(length n-gram, character n-gram, and common words), we present accuracy results using 

each model component in isolation and each possible pair of components (Figure 9).8  We 

use the four-way test drug-nyse-place-person as a representative indicator of 

performance. 

                                                 
8 Note that the full model in Figure 3 is identical to the four-way test in Figure 1.  The slight difference in 
performance is merely due to data set differences. 
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Figure 9. Classification accuracy for individual model components and combinations (four-way test). 

 

Each feature gives a classification accuracy significantly above a most-frequent-

class baseline (34%), with the character n-gram being by far the most powerful single 

feature.  Combining features reveals that the character and length n-grams provide 

complementary information, but adding the word model to the character n-gram does not 

improve performance.  The common word model by itself is quite effective, but it is 

largely subsumed by our high order character n-gram model, because common short 

words are memorized as single n-gram entries, and common long words contain many 

common n-grams.  The word model could be eliminated without hurting performance. 

The word model could also be regarded as a reasonable baseline, since it is 

basically equivalent to the performance expected from a (multinomial) Naïve Bayes word 

model, a model that is often used as a baseline in text classification tasks. As one further 

indicative baseline, we ran a publicly available variable n-gram language identifier on our 

data (Beeferman 1996), which achieves an accuracy of 76.54%. This is not a fair 

comparison: Beeferman explicitly notes that his system is unlikely to be reliable on very 

short inputs of the sort present in our data, but this nevertheless again shows that our 

system is sufficiently well tuned to the task at hand to achieve performance well above 

obvious baseline levels.  

4.3. Impact of other model parameters 

In addition to the three major model components described in Section 4.2, 

performance is affected by the length of the n-gram models used, the use of a word length 
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normalization constant for the character n-gram, and the amount of available training 

data. 

4.3.1. Increasing n-gram length 

The only important model parameters not set on held-out data are the sizes of the 

length and character n-gram models.  In principle, the use of deleted interpolation with 

weights set on held-out data means that very large n-gram models could be used, and 

once data sparseness was a larger factor than predictive accuracy, the higher-order n-

gram factors would be down-weighted.  However in practice training and testing is 

exponentially slow in the length of the n-gram, and the largest useful n-gram size, once 

determined empirically, is relatively stable. 

Table 2 shows classification accuracy of the character n-gram model alone for 

increasing values of n.  Accuracy increases and plateaus, at which point increasing n 

further has no effect.  The same analysis holds for increasing n for the word-length n-

gram, also shown in Table 2. 

 

n 1 2 3 4 5 6 7 
char 60.0 81.4 87.7 89.2 89.5 89.7 89.8

length 46.4 60.1 62.2 62.4 62.4 - - 
Table 2. Classification accuracy of char and word-length n-gram models alone. 

Results are presented on the four-way task. Accuracy for the 6- and 7-gram length 
model were not obtained because performance had already reached a plateau.   

 

4.3.2. Word-length normalization 

As mentioned above, modeling words with a character n-gram model means 

treating characters as the unit of evidence, so that long words have more of an impact on 

classification than short words. However, in many instances, it seems intuitively clear 

that words are a better unit of evidence (indeed, many telling common words like Inc. or 

Lake are very short).  To compensate for this effect, we introduce a parameter to 

normalize the probability assigned to each word in a PNP by taking the (k/length)’th root, 

where length is the number of characters in the word, and k is a global constant set with a 

line search on held-out data.  
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Figure 10. Classification accuracy vs. word length normalization constant (4-way test). 

When characters are the unit of evidence, longer words will naturally have a greater 
effect on the overall classification decision. The role of length-normalization is to 

mitigate this effect—words of length below the cutoff will have their scores boosted 
while those above the cutoff will have it diminished. The optimal tradeoff is an 

empirical property of the given classification task. 

 

Figure 10 shows how varying the value of k affects performance on a typical run.  

The optimal value of k varies by data set, but is usually around 2 to 3.  Probability 

judgments for words of length < k are magnified, while those for words of length > k are 

diminished.  The result is that compelling short words can effectively compete with less 

compelling longer words, thus shifting the unit of evidence from the character to the 

word.  

4.3.3.  Training data size 

Obtaining a large number of examples of each category to use as training data was 

not difficult.  Nevertheless, it is still worth examining classifier performance as a function 

of the amount of training data provided.  Figure 11 illustrates that, while performance 

continues to improve as more training examples are provided, the classifier only requires 

a small subset of the training data to approach its full potential.  This means that, when 

faced with novel categories for which large collections of examples are not immediately 

available, acquiring proficiency should still be possible.   
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Figure 11. Classification accuracy vs. number of training examples (four-way test). 

Error bars at each point show standard deviation from 10 trials (hardly visible). 

 

Figure 11 also indicates that increasing the amount of training data would not 

significantly boost performance.  This hypothesis is supported by the observation that the 

majority of misclassified examples are either inherently ambiguous, or contain words that 

appeared in another category, but that are not strongly indicative of any one category (as 

mentioned in Section 4.1). 

4.4. Generation of novel PNPs 

Generative models are common for classification, but can also be used to perform 

generation.  We can stochastically generate a collection of novel PNPs as an alternative 

means for getting a sense of the quality of the learned models.  First we generate freely 

from the word-length n-gram model until a 0-length word (special stop token) is 

generated.  This gives us a “template” for each word in the PNP (e.g., 5-3-0).  Next, each 

word is filled in by generating from the character n-gram model.  Since it would be 

unnatural to force a space after a predefined number of characters (e.g., to force the first 

word to be five characters long), we employ rejection sampling: words are generated and 

discarded until the first one is naturally generated with the desired length.  The generation 

of subsequent words starts with the ending context of the previous word, as is done for 
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classification.  A favorable selection of generated examples for the five main categories is 

presented in Table 3. 

 
Drug: Esidrine Plus Base with Moisturalent • Ambenylin • Carbosil DM 49 

NYSE: Downe Financial Grp PR • Intermedia Inc. • Host Manage U.S.B. Householding Ltd. 

Movie: Dragons: The Ever Harlane • Alien in Oz • El Tombre 

Place: Archfield • Lee-Newcastleridge • Qatad 

Person: Benedict W. Suthberg • Hugh Grob II • Elias Lindbert Atkinson 

Table 3. Sample of artificially generated proper noun phrases in several categories. 

 

Not all generated examples are this coherent, but we are encouraged by the 

surprisingly natural look of a large fraction of what is generated.  Sometimes entire 

training examples are generated, but usually the result is a mix of existing and novel 

words mixed together.  In general, the closer that stochastically generated examples are to 

real examples, the closer the model is capturing the “essence” of the proper name 

distribution. 
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Chapter 5:  

Combing segmentation and classification 

While proper noun phrase classification on its own can be a valuable application, 

most commonly it takes place alongside finding and segmenting the PNPs in continuous 

text (i.e. highlighting all the names in a document and annotating them with their 

semantic category).  This chapter describes several extensions to the basic model that 

allow for integrated segmentation and classification.  In some systems, segmentation and 

classification are performed as separate, isolated steps (Florian 2002, Cucerzan & 

Yarowsky 2002).  However, we prefer to view the task as one of sequence classification, 

in which each word is labeled as either background text or one of several PNP categories. 

The work presented here is largely based on work by Klein, Smarr, Nguyen, and 

Manning (2003).  Our experiments were conducted using the CoNLL 2003 shared task 

dataset (Tjong Kim Sang & De Meulder 2003), which requires identifying people’s 

names (PER), organization names (ORG), place names (LOC), and miscellaneous other 

names (MISC) in news text.  In this domain, PNPs are referred to as “named entities” and 

the task of segmenting and classifying PNPs is referred to as “named entity recognition” 

(NER).  Data sets were available for both English and German text.  In both languages, 

the data sets were divided into a large training set, a small development set for testing and 

tweaking the model, and a small test set for reporting final scores.  Words came pre-

tokenized, and were annotated with their part of speech and chunk tag (though we 

ignored the latter). 

The two key questions this chapter addresses are: (1) whether character-level PNP 

classification methods effective when the PNPs don’t come pre-segmented; and (2) 

whether the benefits of using character-level features for PNP classification are 

complementary to the value from external contextual cues one has access to when 

classifying PNPs embedded in text. 

5.1. Challenges for named entity recognition 

Finding a known named entity (e.g., Stanford University) in text is fairly simple 

because you can just look for an exact phrase match (although names are often 
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abbreviated, e.g., Stanford may appear alone).  However, highlighting unknown named 

entities is considerably more difficult, because they must be recognized as names, and 

their boundaries must be accurately determined.  In English, capitalization provides 

strong evidence for the existence of a named entity (e.g., “…while staying in Great 

Britain for the summer…”) although this can be misleading at the beginning of sentences 

or in titles and headlines (e.g., “Great British restaurants are hard to find” or “Will Great 

Britain Welcome the Euro?”).  In German, all nouns are capitalized, making the task 

much more difficult (since only proper nouns are of interest). 

Most research has addressed the unknown word problem in NER just as described 

in Section 1.3—with a collection of syntactic context features and gross word-internal 

features such as suffixes, capitalization, and punctuation 1997, Wacholder et al. 1997, 

Bikel et al. 1997).  Given the relative ease of recognizing known names and the relative 

difficulty of recognizing unknown names, we believe that focusing on unknown entities 

is the key challenge for robust NER.  Thus our approach in this chapter is a natural 

extension of the work presented in the previous chapters, both in terms of the task 

definition and the motivation for the particular solution we adopt. 

As was in the case in the PNP classifier, for NER we adopt character sequences as 

a primary representation.  We present two models in which the basic units are characters 

and character n-grams, instead of words and word phrases.  Earlier papers have taken a 

character-level approach to named entity recognition, notably Cucerzan and Yarowsky 

(1999), which used prefix and suffix tries, through to our knowledge, incorporating all 

character n-grams is new.  In Section 5.2, we discuss a character-level hidden Markov 

model (HMM) that uses the PNP classifier to model emissions, while in Section 5.3, we 

discuss a sequence-free maximum-entropy (maxent) classifier that uses n-gram substring 

features.  Finally, in Section 5.4, we add additional features to the maxent model, and 

chain these models into a conditional Markov model (CMM), as used for tagging 

(Ratnaparkhi 1996) or earlier NER word (Borthwick 1999).  We use the English 

development set to compare the performance of different models and feature sets, and we 

report test set performance on English and German at the end using our best model. 

30 



5.2. A character-level HMM 

Figure 12 shows a graphical representation of our character-level HMM.  

Characters are emitted one at a time, and there is one state per character.  Each state's 

identity depends only on the previous state.  Each character's identity depends on both the 

current state and on the previous n – 1 characters.  In addition to this HMM view, it may 

also be convenient to think of the local emission models as type-conditional n-gram 

models.  Indeed, the emissions are modeled using the character n-gram component of the 

PNP classifier described in Chapter 2.  The primary addition is the state-transition 

chaining, which allows the model to do segmentation as well as classification. 

 

 

Figure 12. A character-level HMM.  

The c nodes are character observations and the s nodes are entity types. 

 

When using character-level models for word-evaluated tasks, one would not want 

multiple characters inside a single word to receive different labels.  This can be avoided 

in two ways: by explicitly locking state transitions inside words, or by careful choice of 

transition topology.  In our current implementation, we do the latter.  Each state is a pair 

(t, k), where t is an entity type (such as PERSON, and including an other type) and k 

indicates the length of time the system has been in state t.  Therefore, a state like 

(PERSON, 2) indicates the second letter inside a person phrase.  The final letter of a 

phrase is a following space (we insert one if there is none) and the state is a special final 

state like (PERSON, F).  Additionally, once k reaches our n-gram history order, it stays 

there.  We then use empirical, unsmoothed estimates for state-state transitions.  This 

annotation and estimation enforces consistent labelings in practice.  For example, 

(PERSON, 2) can only transition to the next state (PERSON, 3) or the final state 
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(PERSON, F).  Final states can only transition to beginning states, like (other, 1).  For 

emissions, we must estimate a quantity of the form P(c0|c-(n-1), …,  c-1, s), for example, 

P(s|Thoma, PERSON, 6).9  This is accomplished using the PNP classifier in a single-class 

mode in which each state only emits one kind of PNP (i.e. it just represents a character-

level distribution of a set of strings). 

Given this model, we can do Viterbi decoding in the standard way (Viterbi 1967).  

To be clear on what this model does and does not capture, we now consider a few 

examples (_ indicates a space).  First, we might be asked for P(e|to_Denv, LOC, 5).  In 

this case, we know both that we are in the middle of a location that begins with Denv and 

also that the preceding context was to.  In essence, encoding k into the state lets us 

distinguish the beginnings of phrases, which lets us model trends like named entities (all 

the classes besides other) generally starting with capital letters in English.  Second, we 

may be asked for quantities like P(_|Italy, LOC, F), which allows us to model the ends 

of phrases.  Here we have a slight complexity: by the notation, one would expect such 

emissions to have probability 1, since nothing else can be emitted from a final state.  In 

practice, we have a special stop symbol in our n-gram counts, and the probability of 

emitting a space from a final state is the probability of the n-gram having chosen the stop 

character.10 

Using this model, we tested two variants, one in which preceding context was 

discarded (for example, P(e|to_Denv, LOC, 5) was turned into P(e|XX_Denv, LOC, 5), 

and another where context was used as outlined above.  For comparison, we also built a 

first-order word-level HMM.  The results, shown in Table 4, give F1 accuracies both per-

category and overall.  The word-level model and the (context disabled) character-level 

model are intended as a rough minimal pair, in that the only information crossing phrase 

boundaries was the entity type, isolating the effects of character- vs. word-level modeling 

(a more precise minimal pair is examined in 5.3).  Switching to the character model 

                                                 
9 We index characters, and other vector elements by relative location subscripts: c0 is the current character, 
c1 is the following character, and c-1 is the previous character. 
10 This can be cleaned up conceptually by considering the entire process to have been a hierarchical HMM 
(Fine et al. 1998), where the n-gram model generates the entire phrase, followed by a tier pop up to the 
phrase transition tier. 
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raised the overall score greatly, from 74.5% to 82.2%.  Use of context provided 

additional benefit, but substantially less, bringing the total to 83.2%. 

 
Description ALL LOC MISC ORG PER 

Official baseline 71.2 80.5 83.5 66.4 55.2 

Word-level HMM 74.5 79.5 69.7 67.5 77.6 

Char-level, no context 82.2 76.1 82.2 73.4 84.6 

Char-level, context 83.2 86.9 83.0 75.1 85.6 

Table 4. HMM F1 performance on English development set. 

 

5.3. A character-feature based classifier 

Given the amount of improvement from using a model backed by character n-

grams instead of word n-grams, the immediate question is whether this benefit is 

complementary to the benefit from features which have traditionally been of use in word 

level systems, such as syntactic context features and topic features. 

To test this, we constructed a maxent classifier that locally classifies single words, 

without modeling the entity type sequences s.11  These local classifiers map a feature 

representation of each word position to entity types, such as PERSON.   We present a 

successive hill-climb of results over added feature sets for the English development set 

data in Table 5.  First, we tried only the local word as a feature; the result was that each 

word was assigned its most common class in the training data.  The overall F-score was 

52.29%, well below the official CoNLL baseline of 71.18%, which simply matches all 

full and unambiguous named entities found in the training data.12 

We next added n-gram features; specifically, we framed each word with special 

start and end symbols, and then added every contiguous substring to the feature list.  Note 

that this subsumes the entire-word features.  Using the substring features alone scored 

73.10%, already breaking the phrase-based CoNLL baseline, though lower than the no-

                                                 
11 The classifier was trained using conjugate gradient descent, used equal-scale gaussian priors for 
smoothing, and learned models of over 800K features in approximately 2 hours. 
12 Note that the word model actually outperforms the baseline model for people’s names, because the latter 
is unable to synthesize new first-name/last-name pairs, while the former can do so freely. 
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context HMM, which better models the context inside phrases.  Adding a current tag 

feature gave a score of 74.17%.  

At this point, the bulk of outstanding errors were plausibly attributable to 

insufficient context information.  Adding just the previous and next words and tags as 

(atomic) features raised performance to 82.39%.  More complex, joint context features 

that paired the current word and tag with the previous and next words and tags raised the 

score further to 83.09%, nearly to the level of the HMM, without actually having any 

model of previous classification decisions. 

 
Description Added Features ALL LOC MISC ORG PER 
Words w0 52.29 41.03 70.18 60.43 60.14 
Official Baseline - 71.18 80.52 83.52 66.43 55.20 
N-Grams n(w0) 73.10 80.95 71.67 59.06 77.23 
Tags T0 74.17 81.27 74.46 59.61 78.73 
Simple Context w-1, w0, t-1, t1 82.39 87.77 82.91 70.62 85.77 
More Context ‹w-1, w0›, ‹w0, w1›, ‹t-1, t0›, ‹t0, w1› 83.09 89.13 83.51 71.31 85.89 
Simple Sequence s-1, ‹s-1, t-1, t0› 85.44 90.09 80.95 76.40 89.66 
More Sequence ‹s-2, s-1›, ‹s-2, s-1, t-1, t0› 87.21 90.76 81.01 81.71 90.8 
Final misc. extra features 92.27 94.39 87.10 88.44 95.41 

Table 5. CMM performance with incrementally added features on English development set. 

 

5.4. A character-based CMM 

In order to include state sequence features, which allow the classifications at 

various positions to interact, we have to abandon classifying each position independently.  

Sequence-sensitive features can be included by chaining our local classifiers together and 

performing joint inference, i.e., by building a conditional Markov model (CMM), also 

known as a maximum entropy Markov model (McCallum et al. 2000). 

Previous classification decisions are clearly relevant: for example the sequence 

Grace Road is a single location, not a person’s name adjacent to a location (which is the 

erroneous output of the model in Section 5.3).  Adding features representing the previous 

classification decision (s-1) raised the score 2.35% to 85.44%.  We found knowing that 

the previous word was an other wasn't particularly useful without also knowing its part of 

speech (e.g., a preceding preposition might indicate a location).  Joint tag-sequence 

features, along with longer distance sequence and tag-sequence features, gave 87.21%. 
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The remaining improvements involved a number of other features which directly 

targeted observed error types.  These features included letter type pattern features (for 

example 20-month would become d-x for digit-lowercase and Italy would become Xx 

for mixed case).  This improved performance substantially, for example allowing the 

system to detect ALL CAPS regions.  Other features included second-previous and 

second-next words (when the previous or next words were very short) and a marker for 

capitalized words whose lowercase forms had also been seen.  The final system also 

contained some simple error-driven post-processing.  In particular, repeated sub-elements 

(usually last names) of multi-word person names were given type PERSON.  In total, this 

final system had an F-score of 92.31% on the English development set.  Table 6 gives a 

more detailed breakdown of this score, and also gives the results of this system on the 

English test set, and both German data sets. 
 

English dev. Precision Recall Fβ=1  English test Precision Recall Fβ=1 
LOC 94.44 94.34 94.39  LOC 90.04 89.93 89.98 
MISC 90.62 83.84 87.10  MISC 83.49 77.07 78.85 
ORG 87.63 89.26 88.44  ORG 82.49 78.57 80.48 
PER 93.86 97.01 95.41  PER 86.66 95.18 90.72 
Overall 92.15 92.39 92.27  Overall 86.12 86.49 86.31 
         
German dev. Precision Recall Fβ=1  German test Precision Recall Fβ=1 
LOC 75.53 66.13 70.52  LOC 78.01 69.57 73.54 
MISC 78.71 47.23 59.03  MISC 75.90 47.01 58.06 
ORG 77.57 53.51 63.33  ORG 73.26 51.75 60.65 
PER 72.36 71.02 71.69  PER 87.68 79.83 83.57 
Overall 75.36 60.36 67.03  Overall 80.38 65.04 71.90 

Table 6. Final results obtained for the development and test sets for each language. 

 

5.5. Discussion 

These results demonstrate that character-level features are indeed a useful source 

of information for NER.  When using an HMM, switching from a word-level model to a 

character-level model reduces errors by 30%.  Furthermore, this benefit appears to be 

complementary to that obtained through contextual evidence.  Even in our final context-

rich CMM, using character substrings instead of entire words still reduces errors by 25%.   

Character-level models also appear to extend well to the task of segmentation.  

Using the PNP classifier in a character-level HMM means modeling background text at 
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the character-level as well as PNPs themselves.  Given the heterogeneity and length of 

arbitrary background news text, it is perhaps surprising that this works as well as it does.  

However, as long as the PNPs come from a relatively distinct distribution, they can 

accurately identify their own words, leaving the background model to collect the rest, 

even if the latter does not have a clearly defined distribution of its own. 

Two notable features of the results presented in table 6 are that English test 

performance is considerably lower than English development performance, and German 

performance in general is much lower than English performance.  While a small drop 

from development to test is to be expected, in this case a large source of error was 

inconsistent labeling across the English data sets, particularly in inherently ambiguous 

places such as sports teams named for their home town.  For example, “Boston” can refer 

to the city of Boston (LOC) or a sports team from Boston (ORG), and the annotation 

didn’t consistently sort these cases out.   The drop from English to German is mainly 

attributable to the lack of capitalization cues.  The English results have roughly equal 

precision and recall, while in German, recall suffers more than precision.  The reason is 

that, without capitalization in German, the system is dealing with weaker evidence in 

general, and thus only the most compelling examples will be tagged.  As a result, 

precision (accuracy of tagged names) will remain reasonable, but recall (coverage of all 

tagged names) will suffer because weakly suggestive names are left as background text. 
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Chapter 6:  

How and why proper names can be distinguished 

The preceding chapters demonstrated that the composition of many proper names 

is far from arbitrary with respect to their meanings.  This apparently contradicts the 

common assumption made throughout linguistics that the relationship is a historical 

artifact.  It is thus worth speculating on the forces that shape the naming process.  A 

better understanding of the process by which names are generated can serve both as an 

explanation for the success of the methods presented so far, and as an inspiration for 

improving them further.  In this chapter, we consider relevant linguistic findings in sound 

symbolism, the relationship between PNP classification and language identification, and 

the modern business of creating new brand names. 

6.1. Relation to sound symbolism 

Linguists generally assume that, for the most part, the relationship between the 

sounds of words (or equivalently their written form) and their meaning is arbitrary 

(Saussere 1916/1974, Holdcroft 1991).  In fact, this postulate is the foundation on which 

modern comparative linguistics is founded—language families are identified by finding 

similar sound-meaning pairs and assuming this must be the result of common linguistic 

origin (or sometimes borrowing, Ruhlen 1996).  If the mapping between sound and 

meaning were completely arbitrary, then PNP classification would not be possible—there 

would be no statistical correlations that could be used to improve upon chance guessing.  

Given that, empirically, this is not the case, it is clear that, at least for proper nouns, there 

is some degree of sound-symbolism present.  Sound symbolism is commonly thought of 

as concerned with rare cases such as onomatopoeia, but in fact it is a more general area of 

research on any relationship between the sound of an utterance and its meaning, and there 

is now evidence from a variety of sources that “sound symbolism plays a considerably 

larger role in language than scholarship has hitherto recognized (Hinton et al. 1994). 

Research in sound symbolism has shown that people (implicitly) pick out 

relationships between phoneme classes and semantic classes that extend across many 

languages.  For example, Hinton et al. (1994) report that experiments performed by 
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Berlin and LaPolla suggest that English speakers can correctly guess semantic 

components of Chinese and Jivaro words based on their phonemic composition (p. 10).  

Additional sound-symbolic tendencies exist within individual languages.  For example, 

Sereno (1994) shows that, in English, nouns are more likely to have back vowels while 

verbs are more likely to have front vowels, and this difference is reflected in processing 

times for lexical decision tasks.  Subjects were significantly faster at deciding whether a 

word was a noun or a verb when the vowel pattern was consistent (back vowels for 

nouns, front vowels for verbs) than in the reverse condition.  This effect held for both 

high frequency and low-frequency words, even though the vowel-noun/verb relationship 

holds mainly for high frequency words.   

Rhodes (1994) proposes that English has a rudimentary classifier system, which 

can be seen by examining sets of semantically related words with similar phonemic 

prefixes (reproduced from p. 276): 
st-  [1 dimensional]   (stick, staff, stem, etc.) 

str- [1 dimensional, flexible] (string, strand, strip, etc.) 

fl- [2 dimensional]  (flap, flat, floor, etc.) 

š/sk- [2 dimensional, flexible] (sheet, scarf, skin, etc.) 

n- [3 dimensional]  (knob, knot, node, nut, etc.) 

sp- [cylindrical]  (spool, spine, spike, etc.) 

dr-/tr- [liquid]   (drink, drain, tickle, trough, etc.) 

et al. 

While such systematic correspondences are striking, they are certainly not 

omnipresent.  Leben (2003) points out for example that although the short /i/ vowel is 

evocative of slenderness (e.g., thin and slim) it is also found in words like thick and big.  

More generally, while universal sound-symbolic relationships do exist for many 

phonemes, these relationships are systematically violated and imported into infelicitous 

environments.  Leben draws an analogy to body language—which an integral part of 

everyday communication and which can greatly enhance the ease of comprehension and 

richness of meaning of an utterance when used properly.  However, it is not essential—

books (and telephone conversations) make no use of body language and they are still 

adequately communicative.  Similarly, sound-symbolism can aid interpretation and evoke 

additional associations, but many or most words make do without it. 
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In summary, the ability of our PNP classifier to identify the semantic class of 

unseen words without the aid of surrounding context is less surprising and magical when 

considered in the larger context of sound-symbolic processes in language.  In the range of 

presence of sub-word sound-symbolic units, proper names may be among the most 

susceptible (especially artificially constructed names, discussed in Section 6.3), and our 

model may well be picking up on these implicit sound-meaning pairings in order to 

increase classification accuracy. 

6.2. PNP classification as language identification 

Language identification is the task of classifying a passage of text with the 

primary language in which it is written.  It is conceptually similar to the task on PNP 

classification in that two strings of text, written with the same character set, nevertheless 

have a distinctive look to their character sequences that can be modeled and exploited for 

classification.  In fact, PNP classification can be thought of as a type of language 

identification—distinguishing the “language” of company names, the “language” of drug 

names, and so on. 

Perhaps not surprisingly, several successful language modeling techniques make 

heavy use of character-level statistics (Dunning 1994, Cavnar & Trenkle 1994).  That is, 

rather than trying to identify a language by looking for common words (like “the” or 

“la”), they simply look for common (often sub-word) character sequences (like “-able” or 

“-esque”), which are more numerous and in fact often more distinct.  Recent work (Peng 

et al. 2003) have generalized these character-level language models to perform a wide 

variety of text classification tasks such as authorship attribution (who wrote which 

passages), genre identification, and topic detection.  They achieve impressive results on a 

wide variety of languages, sharing our experience in Chapter 5 that character-level 

models can be easily applied to many languages.  One difference between our approach 

and most other work in language identification is that the latter generally depends on 

having considerably more text available for input than a single PNP.  As we point out in 

Section 4.2, this helps explain why our PNP classifier significantly outperforms the 

character-level language identification system of Beeferman (1996). 
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6.3. The business of creating names 

Our method for classifying proper names is to create a statistical model of their 

generation.  A natural question, therefore, involves the extent to which our model is 

similar to the way in which new names are actually created.  For names of people or 

places, most of which were created ages ago, this can be a difficult question to answer.  

But there is at least one place to look to for inspiration—companies whose primary 

business is coming up with new names for companies and products.  In fact, there are a 

number of professional brand-name creators (Landor, Lexicon Branding, Cintara, 

medibrand, etc.), and their business is booming.13  As Kahn (2001) puts it, “What’s in a 

name…about 40 grand, give or take”.  Krauskfopf’s (2002) gives even higher figures: “It 

takes pharmaceutical companies years and costs them about $2.25 million to name each 

medicine.”  The trick is finding a name that is distinctive enough to be legally protected, 

but that has a “product of several powerful sounds”.  Prozac is touted as one of the best 

invented drug names, and is one of the world’s best-known and best-selling drugs ever.  

The Intel chip Pentium is considered the strongest technology brand of the 1990s, an 

asset worth millions (Leben 2003). 

So how do naming consultants come up with new names?  Part of the effort is 

free-form brainstorming, word- and morpheme-level semantic associations, and so on.  

But a large component in many cases is the sound-symbolically driven composition of 

meaningful character sequences.  For example, 

Lexicon has completed extensive research into how sound symbolism affects the way 

brand names are perceived. If a product would be perceived as faster, bigger, or even 

more reliable depending on how it sounds, it follows that there would be an entirely new 

set of tools to add to the creative process. The results prove that there is.14 

Exploiting people’s tacit knowledge of sound symbolism has become a cornerstone of 

modern brand-name creation.  For example, the popular handheld wireless email device 

BlackBerry gets its name because people “associate the b sound with reliability…while 

the short e evokes speed” (Begley 2002; the original proposed name was “Strawberry” 

because the little keyboard buttons look like seeds).  Begley goes on to describe how “as 

                                                 
13 See www.landor.com, www.lexiconbranding.com, www.cintara.com, and www.medibrand.com 
14 See http://www.lexiconbranding.com/process2aSound.html (visited: 5/4/2003) 
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winning hybrids of real words become scarcer…some naming consultants are advising 

brand managers to tap different synapses in their customers’ brains: those linking the raw 

sounds of vowels and consonants to specific meanings and even emotions”.  At first this 

all may sound like a slick marketing pitch from the branding consultants, but several 

studies, including one by Yorkston and Menon (2003) have found that “consumers use 

information they gather from phonemes in brand names to infer product attributes and to 

evaluate brands” (p. 3).  They conclude furthermore that “the manner in which phonetic 

effects of brand names manifest is automatic in as much as it is uncontrollable, outside 

awareness, and effortless.”  Similar findings are presented by Klink (2001).  However, 

not everyone is a believer in the benefits of sound-symbolic name creation.  As a blog (a 

self-published web journal) connected to the branding firm “A Hundred Monkeys” 

laments, “in the dark ages before linguistics got the upper hand, cars had names like 

Corvette, Camaro, Mustang and Stingray. Now that the professionals are in control, we 

have names like Alero, Prius, Bravada, and Escalade.”15   

While companies like Lexicon have conducted extensive research on the 

meanings associated with each phoneme, most of the knowledge that goes into actual 

brand name creation is tacit in the heads of naming consultants, not explicit in a 

generative computer model (Leben 2003).  There are computer programs that will take as 

input a set of desirable phonemes and produce various combinations, but by and large 

they are not sensitive to the pronounceability, distinctness, or resemblance to the brand 

category of the names they output.  Perhaps the success of the PNP classifier presented in 

Chapter 2 stems from its ability to capture the implicit sound-symbolic processes that 

influence brand creation and acceptance.  Branding consultants are keenly aware of the 

“linguistic landscape” of competing names (Leben 2003).  The tension of creating a name 

that is simultaneously new and distinctive while recognizable and interpretable within a 

category is borne out in the shaping of many of the PNPs in our experiments.  If all 

names were really so unique, classification by category (e.g., identifying all drug names) 

would surely be an impossible task.  The fact that drug names remain so recognizable is a 

sign that group familiarity is, at least for now, a dominant factor in the human generation 

of new names. 

                                                 
15 See http://www.shinolas.com/blog/main.asp (visited: 5/5/2003) 
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Chapter 7:  

Conclusions 

The primary argument of this thesis is that word-internal character sequences 

provide surprisingly strong evidence for predicting the semantic category of proper 

names.  This information is complementary to contextual cues present in surrounding 

text, and can be used independently or as an enhancement to a context-based 

classification system.  By creating a statistical model of PNP generation, we have 

demonstrated that the inherent sound-symbolism of proper names can be captured and 

exploited to aid classification in a wide variety of domains, and even in multiple 

languages, achieving over 90% accuracy in many cases.  The additional benefits of a 

machine-learning approach are that we can quickly acquire proficiency in new domains 

(requiring only lists of names in each category), and we can use the same model to 

generate novel proper names that mimic a given category.  We have shown that these 

models can be extended to perform segmentation in conjunction with classification, 

achieving state-of-the-art performance in named entity recognition across multiple 

languages. Even in the final context-rich sequence classification model, the switch from 

word-level features to character-level features decreased errors by 25%.   

The source of this method’s success is the non-arbitrary relationship between the 

composition of names and the entities they describe.  There are rich and pervasive sound-

symbolic processes at work in proper names, which people are mostly aware of at a 

subconscious level.  One exception is professional brand-name creators, who are keenly 

aware of sound-symbolism and exploit it extensively to create names that have the right 

combination of sounds and evoked meanings.  Our model is picking up on the sound-

meaning regularities tacitly in the minds of name consumers (general language users), 

and actively wielded by name producers (brand consultants).  In this sense, this research 

is of value both as a practical advance in statistical natural language processing 

technology, and as an empirical enquiry into the structure and content of the linguistic 

and cultural forces that shape the creation of new names. 
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Appendix 

Size and source of each PNP data set 

Category:  drug (6871 examples) 
Description:  Micromedex 2000 USP Drug Index 
Source:  my.webmd.com/drugs 
Category:  nyse (3403 examples) 
Description: Companies on the NY Stock Exchange 
Source:  www.nyse.com/listed 
Category:  movie (8619 examples) 
Description: Internet Movie Database (IMDB) listing of 2000 movies and videos 
Source:  us.imdb.com/Sections/Years/2000 
Category:  place (4701 examples) 
Description: Collection of country, state/province, and city names from around the world 
Source: dir.yahoo.com/Regional/Countries  
Category:  person (5282 examples) 
Description:  List of people with online biographies 
Source: www.biography-center.com 
Category:  cheese (599 examples) 
Description: Global database of cheese information 
Source:  www.cheese.com 
Category:  disease (1362 examples) 
Description: MeSH List of Diseases and Disorders 
Source: www.mic.ki.se/Diseases/alphalist.html 
Category:  band (2234 examples) 
Description: Names of popular music bands 
Source: http://directory.google.com/Top/Arts/Music/Bands_and_Artists/ 
Category:  artist (1773 examples) 
Description: Names of popular musical artists 
Source: http://directory.google.com/Top/Arts/Music/Bands_and_Artists/ 
Category:  car (693 examples) 
Description: Automobile model names (modern cars) 
Source: http://autos.msn.com/compare/choose.aspx 
Category:  computer (155 examples) 
Description: Names of desktop PC models 
Source: http://www.epinions.com/cmhd-Desktops-All-Pentium_III 
The GENIA corpus is available at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 
CoNLL 2003 shared task data is available at http://cnts.uia.ac.be/conll2003/ner 

Answers to PNP challenge in Section 4.1. 

PNP Category 

R & C Drug (for lice infections) 

Randall & Hopkirk Movie (1969 TV series) 

Steeple Aston Place (in Oxfordshire) 

Nandanar Person (Indian saint) 

Gerdau Company (Chilean steelmaker) 

 


